Краткая история сотворения мира. Великие ученые в поисках источника жизни на Земле | страница 177



Это достижение открывало невиданные ранее возможности для применения биотехнологии в столь разных областях, как, например, производство синтетического топлива и медицина. Однако вскоре стало ясно, что Синтия не помогает определить источник информации, использовавшейся для построения самых первых клеток. Вентер, как до него Уиммер, по сути, скопировал инструкцию, которую природа создавала на протяжении 4 млрд лет. Это было потрясающее техническое достижение, но оно не давало ответа на вопрос, как зародилась жизнь.


Шостак задумался над созданием искусственной клетки еще в середине 1990-х гг. От Вентера и Уиммера его отличало то, что он хотел понять механизм зарождения жизни, а не просто воспроизвести созданную природой инструкцию. Для него основной вопрос заключался в том, каким образом появилась эта инструкция. Он отталкивался от результатов замечательной серии экспериментов, выполненных в 1960-х гг. биохимиком Солом Шпигельманом, который в свое время пригласил Карла Вёзе на работу в Иллинойский университет.

Шпигельман и его коллеги осуществили важный эксперимент, в котором показали, что молекулы РНК могут вести себя подобно живым организмам и самостоятельно эволюционировать (вполне в дарвиновском смысле) в пробирке. Шпигельман начал с вируса, называемого бактериофагом Qβ (ку-бета), который инфицирует всем известную кишечную палочку Escherichia coli. Геном Qβ состоит из РНК. Ученые очистили РНК, а также белок, ответственный за ее репликацию, а затем смешали их в пробирке, добавив туда все простые молекулы, необходимые белку для построения новых молекул РНК Qβ. Через некоторое время несколько капель смеси, уже содержавшей разные неполные копии исходной молекулы РНК, перенесли в новую пробирку, где были только белок и простые молекулы предшественников. Процедуру повторили 74 раза, каждый раз перенося из последней пробирки в новую по несколько капель смеси. При каждом пассаже отбиралась новая популяция мутантных молекул, служившей отправной точкой для «эволюции», осуществлявшейся в следующей пробирке.

В конце эксперимента обнаружилось нечто невероятное: РНК из пробирки № 74 состояла всего из 218 нуклеотидов, тогда как исходная молекула РНК бактериофага содержала около 4500 нуклеотидов. Произошло своеобразное соревнование, в котором выиграли самые короткие молекулы. И это понятно: чем короче молекулы, тем быстрее они копируются и, следовательно, вытесняют более длинные молекулы. Таким образом, Шпигельман воспроизвел в пробирке некий вариант естественного отбора для изолированных молекул РНК. Коллеги назвали полученные им молекулы «монстрами Шпигельмана».