Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия | страница 45
Галилео Галилей (~1610 г.). Провел эксперименты и создал научные основы механики и астрономии. К ужасу классических философов, пренебрегая грозившей ему лично опасностью, провозгласил необходимость твердо держаться эксперимента. С помощью изобретенного им телескопа подтвердил правильность теории Коперника, которую страстно защищал, пока не стал жертвой инквизиции.
Рене Декарт (~1640 г.). Этот французский философ описал картину строения Вселенной, выведенную из общих принципов, которые, по его мнению, созданы богом. Возражал против представления о вакууме и считал, что пространство заполнено вращающимися вихрями, увлекающими за собой планеты. Величайшим вкладом в науку явилось введение в геометрии прямоугольной системы координат: применение графиков позволило связать алгебру с геометрией; заложил основы дифференциального исчисления. Начиная с XVII века создавались большие научные общества для обмена знаниями и стала свободно развиваться наука, основанная на экспериментах.
Исаак Ньютон (~1680 г.). Собрал результаты, полученные до него Галилеем и другими учеными, и сформулировал «законы», суммирующие экспериментальные факты и связывающие массу, движение и силу. Развил понятие силы тяготения, установив закон всемирного тяготения, согласно которому все тела притягиваются друг к другу с силой, обратно пропорциональной квадрату расстояния между ними; показал, что на основе этого закона можно объяснить движение Луны, три закона Кеплера, приливы и отливы и т. п. Таким образом построил великую дедуктивную теорию. В ходе этого ему пришлось в качестве математического аппарата создать основы дифференциального исчисления. Проводил эксперименты и создавал теории и в других областях физики, особенно в оптике.
В течение следующих двух столетий теория тяготения разрабатывалась математиками и физиками, в том числе французскими математиками Жозефом Лагранжем и Пьером Лапласом, по очень незначительному гравитационному действию на другие планеты была открыта новая планета.
Альберт Эйнштейн в начале этого столетия предложил видоизменить и иначе интерпретировать законы механики. Эти изменения, не разрушая представлений Ньютона, позволили объяснить, например, непонятное ранее малое движение перигелия планеты Меркурий или же поведение очень быстро движущихся атомов. Теория относительности не только изменила «рабочие правила» механики; ее огромное значение в том, что она бросает свет на соотношение между экспериментом и теорией, объясняя многие факты, остававшиеся ранее непонятными даже для самых выдающихся ученых.