Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия | страница 154



и т. д. за одинаковые отрезки времени, а внешнее усилие возникает только в точках В, С, D и т. д. Планета движется равномерно вдоль АВ, затем в точке В испытывает мгновенное воздействие по направлению BS и резко изменяет свою скорость, начиная двигаться (уже с другой скоростью) вдоль ВС. Если исключить из рассмотрения точку В, то планета будет продолжать двигаться прямолинейно, как в рассмотренном выше простом примере! Продолжив прямую линию, отложим на ней отрезок ВХ, равный АВ. Если не учитывать притяжения в точке В, то планета пройдет расстояния АВ и ВХ за одинаковые отрезки времени, и радиус-вектор, проведенный из точки X, опишет одинаковые треугольники SAB и SBX. Но в действительности планета достигает вместо точки X положения С.

Повлияет ли это на равенство площадей? Если планета приходит в точку С, то нужно рассматривать треугольники SAB и SBC. Равны ли эти треугольники? Усилие действует в точке В по направлению к Солнцу вдоль прямой линии BS и изменяет направление движения. Это усилие придает планете добавочное количество движения, направленное по прямой BS, которое, складываясь с ее начальным количеством движения, обеспечивает движение планеты по прямой ВС. Начальное количество движения направлено по прямой АВ. Поэтому

НАЧАЛЬНОЕ КОЛИЧЕСТВО ДВИЖЕНИЯ, НАПРАВЛЕННОЕ ПО АВ + ДОБАВОЧНОЕ КОЛИЧЕСТВО ДВИЖЕНИЯ, НАПРАВЛЕННОЕ ВДОЛЬ BS = НОВОЕ КОЛИЧЕСТВО ДВИЖЕНИЯ, НАПРАВЛЕННОЕ ПО ВС.

Из второго закона Ньютона следует, что количество движения по ВС — вектор. Поэтому суммирование необходимо проводить по законам векторного сложения (фиг. 155).



Фиг. 155.Изменение количества движения в точке В.


Так как масса планеты постоянна, то мы можем сократить ее и пользоваться для сложения скоростями:


СКОРОСТЬ ВДОЛЬ АВ + ПРИРАЩЕНИЕ СКОРОСТИ ВДОЛЬ BS = СКОРОСТЬ ПО НАПРАВЛЕНИЮ ВС.

Изобразим скорость планеты вдоль прямой АВ отрезком АВ. Тогда отрезок ВХ также будет равен этой скорости, а отрезок ВС будет соответствовать новой скорости планеты, направленной по прямой ВС (так как все отрезки равны расстояниям, проходимым за равные промежутки времени). Пользуясь этим масштабом, мы можем построить векторную диаграмму (фиг. 156), выражающую записанные выше уравнения.



Фиг. 156.Повторение фиг. 165 для скоростей.

>Масштаб выбран таким, чтобы АВ или ВХ равнялись начальной скорости вдоль АВ, до ее изменения под действием силы притяжения в точке В.


Пусть ВХ (=) — начальная скорость до воздействия усилия, а