Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия | страница 120
Фиг. 100.
Ускорение тела, движущегося по окружности
Рассмотрим планету, движущуюся по окружности (камень на веревке, или самолет, или атом, фиг. 101). Будут ли они иметь ускорение? Если нет, то нам трудно будет отыскать действующую на них результирующую силу, но тогда почему они не движутся вперед по прямой? Так все же не имеет ли планета ускорения' Конечно, ускорение вдоль направления ее движения отсутствует, ведь мы выбрали случай движения с постоянной скоростью. Может быть, имеется ускорение, направленное поперек движения планеты, перпендикулярно ему?
Попытаемся нарисовать векторы, с помощью которых можно было бы рассмотреть изменение (вектора) скорости. Пусть тело Р перемещается по окружности радиусом R с постоянной скоростью v, представляющей абсолютную величину вектора скорости тела Р. Направление скорости совпадает с направлением перемещения тела в каждый момент времени. В точке А вектор скорости тела v направлен, как это показано на фиг. 102, по касательной. Если тело движется с постоянной скоростью, то в точках А и В величина вектора скорости v будет одной и той же, но направление будет различным, оба вектора не идентичны. Между точками А и В происходит изменение скорости. (А вследствие этого и ускорение, а поэтому… продолжая эти рассуждения, мы доберемся до планетной астрономии.) Для определения «ускорения» рассчитаем изменение скорости и поделим его на соответствующий интервал времени. Такая процедура предусматривает вычитание векторов для нахождения изменения скорости, что уже было сделано в задаче 1 в начале этой главы.
Фиг. 102. Векторы скорости.
Вывод формулы а = v>2/R.
По мере движения тело Р изменяет свою скорость от (v вдоль АТ) до (v вдоль BT'). Для определения изменения скорости построим векторную диаграмму. Перенесем эти два вектора в общую точку X и проведем линию XY, представляющую вектор скорости v в точке А, и линию XZ, представляющую вектор скорости v в точке В.
Тогда XY будет «старая скорость», a XZ — «новая скорость». Каково же изменение скорости? Какой вектор следует добавить к старому вектору скорости для получения нового вектора скорости?
Такое изменение показано с помощью отрезка YZ, представляющего собой вектор и обозначенного Δv на фиг. 103.
Фиг. 103.Изменение скорости.
>Скорости направлены по касательным, перпендикулярным радиусам, поэтому треугольник ОАВ подобен угольнику XYZ векторной диаграммы
Тогда (Старый векторv) + Δv путем сложения векторов