Вычислительное мышление: Метод решения сложных задач | страница 98
Когда нам нужно проследить за более сложными моделями во времени, мы порой слабо представляем, что это за модели, поэтому трудно создать исходный фильтр. Чтобы решить эту проблему, обычно используют алгоритмы, способные изучить необходимые нам модели. Это подразумевает создание фильтров на основе сотен образцов. Такие фильтры бывают очень сложными. Например, можно взять сотни видео с обычным поведением людей, входящих в поезд метро и выходящих из него, и извлечь из них наиболее вероятные модели. Если прогнать через эти усвоенные фильтры настоящую сцену, происходящую на платформе, они выделят подозрительное поведение. Это могут быть модели движения, которые мы не ожидаем здесь увидеть, — например, кто-то слишком долго ждет у края платформы или на ней стоит сумка, которую никто не забирает. То есть мы увидим исключения из изученных моделей.
Временные модели важны и в музыке. В конечном итоге это, в сущности, и есть музыка — ноты меняются во времени на основе интересных моделей, что доставляет нам удовольствие. Чтобы устранить несовершенства из музыкальной записи, можно использовать фильтры. Например, скандально известное программное обеспечение для «автотюна», которое «исправляет» дребезжащие голоса поп-звезд, и после обработки они звучат безупречно. Программа изучает образец звука, полученный от певца, и образец необходимого звука и меняет вокальный сигнал, приводя его в соответствие с моделью. Программы, распознающие музыку, используют Это всего лишь образцы звуковых элементов — частота, темп и так далее, — извлеченные из музыкального произведения. Они дают уникальный набор значений — музыкальный отпечаток, который сопоставляют со значениями в объемной базе данных из уже помеченных произведений и таким образом узнают произведение.
В медицине и генетике тоже изучают образцы. Например, чтобы предсказать, какие болезни вероятны для человека, исходя из особенностей его генотипа, или понять, как генетические особенности повлияют на взаимодействие организма с конкретными лекарствами, и адаптировать методы лечения к индивидуальным потребностям. Такое применение информатики и выявление шаблонов открывают перспективы для появления в медицине новых способов, с помощью которых можно находить новые лекарства и новые методы лечения. Например, со временем при поступлении в больницу будут сразу же проводить анализ вашей ДНК, и к тому времени, как вы окажетесь в палате, для вас уже подготовят индивидуальные лекарства, которые гарантированно произведут минимальный побочный эффект лично на вас. Сейчас это уже реальная возможность. Все сводится к тому, чтобы научить компьютеры вычислительному мышлению.