Вычислительное мышление: Метод решения сложных задач | страница 37



не с целью решить конкретную головоломку, как мы делали до сих пор, но с целью создать новые правила. При этом мы уверены, что эти новые правила гарантированно выведены из основных. Давайте посмотрим, о чем идет речь, на некоторых примерах.

Правило одного шестиугольника

Вернемся к решению предыдущей головоломки. Мы выяснили, что, если в области содержится только один шестиугольник, в нем должна стоять 1. Это следует непосредственно из первого правила. Осознав, что нет необходимости снова это обдумывать, мы можем из начального правила вывести новое.

в области есть только один шестиугольник, в нем может стоять только 1.

Чтобы наглядно представить это правило и не ограничиваться словами, мы набросаем схему (рис. 20). Стрелка показывает, какие изменения мы вносим в улей. Слева изображена позиция сопоставления с образцом, а справа — вносимые изменения, если найдем образец. Подобные правила называются или Наше правило в виде схемы показывает, что если мы найдем пустой участок в один шестиугольник, то можем преобразовать его в шестиугольник с 1.



Теперь можно применять это правило, даже не задумываясь, почему оно работает. Наше логическое мышление теперь оперирует на более высоком уровне, по крайней мере в такой простой ситуации.

Правило двух шестиугольников

Теперь выведем еще одно новое правило для областей, состоящих из двух шестиугольников. Мы видели, что если есть область из двух шестиугольников и в одном стоит 2, то во второй нужно поставить 1 (рис. 21).



Мы вправе рассматривать это как правило из конкретного примера нашей головоломки. Не важно, в каком шестиугольнике стоит 2, — логика не меняется. Даже если картинку перевернуть, правило останется прежним. Это правило применимо и к шестиугольникам, соприкасающимся по диагонали в любом направлении. Но обобщение можно продолжить. По той же логике, если в области из двух шестиугольников в одном уже стоит 1, в другой нужно поставить 2. Это показано на рис. 22.



Объединив два эти отдельные правила, мы получаем полное обобщенное правило:

4. один шестиугольник в области из двух содержит 1 или 2,

в другом шестиугольнике будет второе число из этих двух.

Правило можно представить в виде схемы, где будет обозначать любое число (точно так же, как математики используют и для обозначения переменных в алгебре).



В одном случае заменяет 1, а в другом — 2, но замена остается неизменной в рамках одного примера. Схема правила приведена на рис. 23. На схеме