Вычислительное мышление: Метод решения сложных задач | страница 35
Существует великое множество разного рода головоломок, и все они рассчитаны на умение мыслить логически. Вы наверняка видели судоку в специальных сборниках или в газетах. Это головоломки, которые представляют собой сетку с числами. Давайте рассмотрим логическое мышление на примере более простой головоломки, которая называется «Улей». Идею для нее мы почерпнули у японского автора головоломок Наоки Инаба.
Головоломка «Улей» представляет собой блок из шестиугольников — символический улей с сотами. Его участки разделены толстыми линиями. Заполняя улей, необходимо соблюдать два правила.
В каждой выделенной области должны находиться числа от 1 и до числа, равного количеству шестиугольников в области. Например, самый верхний уровень в головоломке на рис. 12 состоит из четырех шестиугольников, поэтому их надо заполнить числами 1, 2, 3 и 4. Числа нельзя повторять. Если в области всего два шестиугольника, как на этом рисунке, то нужно внести числа 1 и 2.
Шестиугольники с одинаковыми номерами не могут соприкасаться ни с одной гранью. Таким образом, поскольку в улье на рис. 12 в среднем шестиугольнике стоит 4, ни в одном из пяти, окружающих его шестиугольников 4 стоять не может.
На рис. 12 представлена простая головоломка «Улей», которую мы предлагаем решить. Попробуйте сделать это, прежде чем продолжить чтение.
Вот логические рассуждения, с помощью которых мне удалось решить головоломку. Мои рассуждения основаны на правилах, форме улья и уже данных числах. В этих рассуждениях показано, почему заполненная головоломка, которую я считаю решением, действительно является решением.
В правой нижней части улья есть участок, состоящий лишь из одной ячейки. В соответствии с первым правилом, в ней должно стоять число от 1 до… 1. Поэтому я ставлю туда 1, как на рис. 13.
Наконец, слева внизу у нас есть область из двух ячеек. В них должны стоять 1 и 2 (по первому правилу). В одном шестиугольнике уже есть 2, так что единственный вариант для оставшегося шестиугольника — это 1 (рис. 14).
В двух оставшихся областях — по четыре шестиугольника. Сейчас нам придется поломать голову. Посмотрите на 1 в нижнем углу. Это значит, что ни в одном из трех окружающих его шестиугольников не может быть 1 (по второму правилу). Однако в этой области есть только четыре шестиугольника, и один из них должен содержать 1 (по первому правилу). Значит, 1 должна находиться в последнем шестиугольнике, который не соприкасается с 1, потому что в другое место единицу не поставишь. Мы получаем улей с рис. 15.