Хулиномика. Хулиганская экономика. Финансовые рынки для тех, кто их в гробу видал | страница 86



9.5

Ожидание мата

Ещё одна важная концепция, которую мы будем использовать, — это матожидание. Кто-то может называть его средним или наиболее ожидаемым результатом — это примерно взаимозаменяемые термины. Можно их немного по-разному объяснять в зависимости от того, говорим ли мы о среднем из выборки или из всей совокупности событий.

Но сначала надо таки понять, что такое случайная величина. Если мы проводим эксперимент и результат эксперимента — какое-то непредсказуемое число, то наш эксперимент выдаёт случайную величину. Ну, к примеру, если мы бросаем монету и присвоим решке 0, а орлу — 1, тогда вот мы и определили случайную величину.

Существуют дискретные (то есть прерывистые) случайные переменные, типа той, что я только что привёл в пример, — у неё могут быть только конкретные значения. Когда мы имеем дело со случайными, но вполне определёнными событиями в идеальных условиях (как, например, подбрасывание абсолютно честной монеты), вероятность происшествия — это число нужных нам исходов, делённое на число всех возможных исходов. Так, два раза бросив монету, мы получим вероятность выпадения нужных нам двух решек в виде 1/4, потому что исхода у нас четыре (решка-решка, решка-орел, орёл-решка и два орла) — и все они имеют одинаковые шансы.

Есть ещё непрерывные случайные величины, которые на некотором отрезке могут принимать любое значение. Ну вот возьмём мы, смешаем зачем-то горячий чай и холодную водку и опустим туда термометр. Кстати, его тоже изобрели в 17-м веке, и тогда концепцию температуры — для нас привычную и понятную — только-только начали применять. Вы уже догадались, что в нашем стакане с волшебным чаем температура — величина непрерывная, у неё неограниченное количество возможных значений, хотя минимальное и максимальное мы представляем неплохо.

Для дискретных случайных переменных матожидание можно обозначить греческой буквой μ (мю), и оно будет суммой всех результатов, помноженных на вероятность каждого из них.

В СЛУЧАЕ БРОСКА НАШЕЙ УСЛОВНОЙ МОНЕТЫ МАТОЖИДАНИЕ БУДЕТ РАВНО ОДНОЙ ВТОРОЙ, И РЕЗУЛЬТАТА ТОЛЬКО ДВА.

А вообще, конечно, их может быть любое число, в том числе и бесконечное. Но их можно сосчитать и узнать средневзвешенную оценку, а она и называется матожиданием. Также его называют средним арифметическим. Но чтобы его посчитать, мы должны знать точные вероятности.

Для пущей ясности возьмём обычный шестигранный кубик. Очевидно, что вероятность выпадения каждой цифры — одна шестая. Сумма всех выпадений — 1+2+3+4+5+6 = 21. Берём от каждой одну шестую, складываем вместе (или просто 21 делим на 6), получаем три с половиной. Значит, матожидание броска кубика — 3.5. Если мы много раз бросим кубик и посчитаем среднее, то получится число, близкое к 3.5. Понятно, что в случае броска одного кубика ожидать 3.5 бессмысленно, а вот в случае двух ждать семёрки — очень хорошая идея.