Песни о Паскале | страница 140
Слово «множество» намекает на большое количество чего-либо. Чего именно? А все равно! Множества придумали математики, а им безразлично, что считать. Так подать сюда математика, и пусть ответит за всех! Скоро явился математик, взял два кружочка – черный и белый – и, протерев свои толстые очки, стал объяснять. Вот суть его речи.
Вы полагаете, что это кружочки? Нет, друзья, это два множества точек, – одно принадлежит черному кругу, другое – белому. Обозначим первое из них латинской буквой B (от Black – «черный»), а второе буквой W (от White – «белый»). Итак, черные и белые точки этих кружков назовём элементами множеств. Сколько там этих точек? Доказано, что бесконечно много, но к свойствам множеств это не имеет отношения. Что же это за свойства?
Добавление к множеству существующих элементов
Покройте черный круг таким же или меньшим черным кругом, или почеркайте его углем, – заметите разницу? Если на белый круг наложить такой же, или почеркать его мелом, – тоже не увидите изменений. Значит, множество не изменится при добавлении к нему элементов, уже входящих в это множество. На языке математики это свойство выразится так:
B + B = B
или так:
W + W + W = W
Не правда ли, странная арифметика?
Объединение множеств
Продолжим наши мысленные опыты и перекрасим оба круга в серый цвет. Будем считать их теперь одной фигурой, разорванной на части.
Так мы получили новое множество, представляющее сумму или объединение двух предыдущих. Обозначим это новое множество буквой G (от Gray – «серый») и выразим то, что сделали, формулой.
G = B + W
Очевидно, что число точек во вновь образованном множестве равно их сумме в двух исходных. Пока в этом нет ничего интересного, – ведь исходные множества B и W, как говорят математики, не пересекаются. Сблизим круги так, чтобы добиться их частичного перекрытия (рис. 82).
Теперь количество точек в объединенном множестве будет меньше, чем в двух исходных по отдельности.
G < B + W
В общем случае при объединении множеств (как пересекающихся, так и не пересекающихся) соблюдается правило.
G ≤ B + W
Пересечение множеств
Иногда математиков (и не только их) интересует область пересечения множеств, отметим её серым цветом (рис. 83).
Операцию пересечения множеств обозначают знаком умножения.