Краткое введение в ГИС | страница 53



Из-за высокой стоимости и ограниченности времени и ресурсов сбор данных обычно производится на ограниченном количестве точек. В ГИС, интерполяция полученных значений позволяет построить растровое изображение, значения пикселей которого являются оценочными значениями, полученными на основе данных точек.

Например, чтобы создать цифровую модель рельефа на основе высотных данных, собранных с помощью GPS-устройства в определенных точках, выбирается метод интерполяции, подходящий для оптимальной оценки высоты в тех точках, где данные отсутствуют. Полученная модель может быть использована для проведения анализа или как основание для другой модели.

Существует целый ряд методов интерполяции. В этом разделе мы расскажем о двух широко используемых методах: IDW (англ. Inverse Distance Weighting, рус. Обратное Взвешенное Расстояние) и TIN (англ. Triangulated Irregular Networks, рус. Нерегулярная Триангуляционная Сеть). Если Вы хотите узнать больше о других методах интерполяции, просим Вас обратиться к источникам, указанным в рубрике «Дополнительная информация».


IDW — Обратное Взвешенное Расстояние

Метод интерполяции IDW заключается в том, что происходит взвешивание точек таким образом, что влияние известного значения точки затухает с увеличением расстояния до неизвестной точки, значение которой надо определить (см. Рисунок 88).


>Рисунок 88: Метод интерполяции IDW, основанный на взвешенном расстоянии от точек сбора данных (слева). Итоговая поверхность рельефа создана методом IDW-интерполяции на основе точечного слоя с атрибутом высоты над уровнем моря. Источник изображения: Mitas, L., Mitasova, H. (1999)

Взвешивание присваивается точкам сбора данных на основе коэффициента взвешивания, который контролирует, как воздействие точки будет уменьшаться с увеличением расстояния до этой точки. Чем выше коэффициент взвешивания, тем меньше будет эффект, оказываемый точкой, если она будет далеко от неизвестной точки, значение которой определяется в ходе интерполяции. По мере возрастания коэффициента значение неизвестной точки будет приближаться к значению ближайшей точки сбора данных.

Важно отметить, что метод интерполяции IDW также имеет некоторые недостатки. Качество результата может снизиться, если распределение точек сбора данных носит неравномерный характер. Кроме этого, максимальные и минимальные значения интерполированной поверхности могут быть зафиксированы только в точках сбора данных. Это часто приводит к небольшим пикам и углублениям вокруг этих точек, как можно видеть на Рисунке 88.