Революция в физике | страница 97



. Применяя формулу Рэлея, мы видим тогда, что скорость волнового пакета равна скорости, которую классическая механика приписывает рассматриваемой частице. Это замечательное совпадение знаменательно, ибо оно означает, что частица в процессе движения остается связанной со своей группой волн. Но сверх того, общая теория колебаний гласит, что групповая скорость есть не что иное, как скорость переноса энергии волнами. Поскольку в нашей дуалистической концепции энергия приписывается частице, то естественно, что групповая скорость связанных с частицей волн должна быть равна скорости частицы.

Эти первые удовлетворительные результаты еще не полны. Они установлены пока только для очень специального случая прямолинейного равномерного движения частицы в отсутствии внешнего поля. Однако не составляет особого труда обобщить эти результаты. Рассмотрим, например, движение частицы в постоянном поле. Теория Якоби предлагает рассматривать траектории частиц как лучи распространения некоторых волн. Отождествляя принцип наименьшего действия и принцип Ферма, снова приходим к тому же соотношению, связывающему частицу с ее волной: энергия (постоянная) частицы равна частоте волны, умноженной на h, а импульс частицы, который меняется в поле сил от точки к точке, равен постоянной h, деленной на длину соответствующей волны, подобным же образом меняющуюся в пространстве. Можно и дальше обобщить эти результаты, рассмотрев случаи, когда поля зависят от времени. В этом случае снова обнаружим, что соотношения между динамическими характеристиками частицы и частотой и длиной связанной с ней волны остаются теми же самыми.

Обобщая таким образом параллелизм между частицей и связанной с ней волной, мы идем по правильному пути. Действительно, если мы рассмотрим, как ведут себя внутри атома Бора волны, связанные с электронами, придем к пониманию внутреннего смысла условий квантования: связанная с электроном волна оказывается резонансной как раз на длине его траектории. Иными словами, волна, соответствующая стационарному состоянию атомного электрона, сама стационарна в смысле теории колебаний.

Чтобы осознать действительную важность этого результата, напомним кратко, что такое стоячая стационарная волна. Если в ограниченной среде могут распространяться волны какого угодно сорта, то в ней устанавливаются стоячие волны, т.е. такие колебания, конфигурация которых в пространстве не меняется с течением времени. Форму этих колебаний можно сразу определить из характера уравнения, описывающего распространение, волны, геометрии границ среды и условий на этих границах. Например, часто бывает, что условия на границах среды требуют, чтобы колебания на этих границах обращались в нуль (колеблющиеся струны с закрепленными концами, радиоантенны, изолированные на обоих концах и т.д.). В этом случае мы должны искать решения волнового уравнения, периодические во времени и обращающиеся в нуль на границах среды; их амплитуды везде должны быть конечными, однозначно определенными и непрерывными внутри среды. Нахождение этого решения представляет собой математическую задачу о собственных значениях уравнения в частных производных для определенной области пространства и определенных граничных условий. Всем физикам известно много простых примеров такого рода решений. Это, например, упругие стоячие волны, возникающие в колеблющейся струне с закрепленными концами, частота которых кратна основной частоте, или стоячие электромагнитные волны в антенне, изолированной на одном конце с заземленным другим; стоячие волны, длины которых равны учетверенной длине антенны, деленной на последовательные нечетные целые числа.