Революция в физике | страница 68
Конечно, можно было бы предположить, что явления интерференции связаны с взаимодействием большого числа фотонов, одновременно участвующих в процессе. Но тогда интерференционные явления должны были бы зависеть от интенсивности света и в случае достаточно малой интенсивности, когда в интерференционный прибор попадает одновременно не более одного фотона, вовсе бы отсутствовали. Такой эксперимент впервые был поставлен Тейлором и привел к отрицательному результату. Опыт показал, что какова бы ни была интенсивность падающего света, интерференционная картина остается одной и той же при условии, конечно, что время экспозиции будет достаточно велико. Это указывает на то, что каждый фотон, взятый в отдельности, участвует в явлении интерференции – факт чрезвычайно странный, если считать фотоны локализованными в пространстве.
Другая трудность, которая возникает, если пытаться последовательно придерживаться гипотезы о чисто корпускулярной природе света, состоит в следующем. Самый способ, которым Эйнштейн вводит понятие кванта света, или фотона, опирается на понятие частоты, в свою очередь связанное с представлением о некотором непрерывном периодическом процессе. Чисто же корпускулярные представления об излучении как о совокупности фотонов никак не позволяют определить какую-либо периодичность, частоту. В действительности, частота, фигурирующая в определении кванта, – это частота, заимствованная у волновой теории, которая выводится из явлений дифракции и интерференции. Значит, само определение энергии фотона как произведения частоты на постоянную Планка с чисто корпускулярной точки зрения непоследовательно. Более того, оно как бы устанавливает связь между волновой концепцией света и вновь возродившейся с открытием фотоэффекта корпускулярной концепцией. Однако было бы неправильно думать, что до открытия фотоэффекта последняя не имела под собой никаких оснований.
Явления отражения света от зеркал, прямолинейность его распространения в однородных средах, да и вообще вся геометрическая оптика с ее понятием световых лучей очень естественно укладываются в баллистическую корпускулярную картину. Но теория Френеля, великолепно объяснив все эти баллистические аспекты с чисто волновой точки зрения, привела к тому, что корпускулярная картина оказалась не у дел. Открытие фотоэффекта заставило снова вернуться к представлениям такого рода, хотя, конечно, уже соотношение Эйнштейна между энергией фотона и его частотой показывало, что волновая концепция не отвергается начисто и фотонная теория должна как-то объединить волновые и корпускулярные представления таким образом, чтобы оба аспекта имели определенный физический смысл.