Революция в физике | страница 47



Продолжая тем же путем физическую интерпретацию преобразования Лоренца, Эйнштейн показал, что любое материальное тело, движущееся относительно наблюдателя, будет ему казаться короче (в направлении движения), чем наблюдателю, относительно которого это тело покоится, т.е. наблюдателю, движущемуся вместе с этим телом. Поясним это утверждение также несколько более подробно. Пусть два наблюдателя движутся друг относительно друга равномерно и прямолинейно в некотором направлении D. Предположим, что один из наблюдателей несет с собой линейку, ориентированную параллельно D. Пусть ее длина, измеренная этим наблюдателем, равна, например, одному метру. Тогда для другого наблюдателя длина этой же линейки будет меньше метра, причем это отличие будет тем значительнее, чем больше будет скорость относительного движения. Величина этого «сокращения» движущейся линейки, вообще говоря, чрезвычайно мала и становится заметной лишь при приближении скорости относительного движения к скорости света в пустоте. Именно по этой причине такое сокращение не удавалось измерить с помощью прямого эксперимента. Однако это сокращение, имеющее практически ничтожную величину, оказалось в точности равным тому, которое предполагали Фицджеральд и Лоренц, и было как раз таким, чтобы строго объяснить отрицательный результат опыта Майкельсона. И тем не менее, несмотря на это совпадение, имеется существенная разница между сокращением по Фицджеральду – Лоренцу и сокращением по Эйнштейну. Действительно, первые рассматривали его как действительное сокращение тел, находящихся в абсолютном движении по отношению к неподвижному эфиру, тогда как второй – лишь как кажущееся движущемуся наблюдателю сокращение, связанное только с процессами измерений, которыми пользуются различные наблюдатели для измерения расстояний и промежутков времени, и преобразованием Лоренца, математически выражающим связь между результатами измерений, проделанных двумя различными наблюдателями, находящимися в относительном движении.

Кажущееся сокращение размеров сопровождается кажущимся замедлением хода часов. Наблюдатели, находящиеся, например, в системе координат А, изучая ход часов, движущихся вместе с системой В, обнаружат, что они отстают от их собственных часов, покоящихся в системе А. Иначе говоря, можно утверждать, что движущиеся часы идут медленнее неподвижных. Как показал Эйнштейн, это тоже одно из следствий преобразования Лоренца. Итак, кажущееся сокращение длин и замедление хода часов однозначно следует из новых определений пространства и времени, с которыми и связано преобразование Лоренца. И обратно, постулируя сокращение размеров и замедление хода часов, можно получить формулы преобразования Лоренца.