Логика | страница 36
Рассмотрим теперь отношение между их объёмами. В то время как содержание понятия «треугольник» составляет только часть содержания понятия «прямоугольный треугольник», с объёмами этих понятий дело обстоит наоборот: объём понятия «прямоугольный треугольник» мыслится как полностью содержащийся в объёме понятия «треугольник», образуя только часть этого последнего, так как кроме прямоугольных треугольников к треугольникам принадлежат ещё и другие треугольники.
Такое отношение совместимости, как отношение между понятиями «прямоугольный треугольник» и «треугольник», называется подчинением понятий. Отношение подчинения есть отношение частного понятия к понятию более общему, и обратно: отношение понятия более общего к понятию более частному. При этом более частное понятие «прямоугольный треугольник» называется подчинённым, а более общее — «треугольник» — подчиняющим.
Отношение между объёмами подчинённых одно другому понятий изображается посредством двух кругов, из которых один целиком помещается внутри другого (см. рис. 2).
При этом больший круг А изображает объём подчиняющего понятия, а меньший круг В — объём понятия подчинённого.
§ 27. Некоторые случаи подчинения понятий заслуживают особенного внимания. Таков случай, когда подчиняющее и подчинённое понятия оба суть понятия общие. В этом последнем случае подчиняющее понятие называется родом, или родовым понятием, а подчинённое понятие — видом, или видовым понятием.
В нашем примере — «треугольник», «прямоугольный треугольник» — понятие «треугольник» — родовое, понятие «прямоугольный треугольник» — видовое>1.
§ 28. Родовое понятие, будучи более широким, чем видовое, по объёму, заключает в своём содержании меньшее сравнительно с видовым понятием количество признаков.
В каждом понятии, если оно подлинно научное понятие, предусматриваются все частные случаи, какие могут быть из него выведены и из каких составляется полное содержание понятия. Всякое научное понятие образуется по правилу, зная которое мы можем последовательно охватить все частные случаи, какие может представить его содержание.
Например, понятие «треугольник» есть понятие о фигуре, образованной пересечением трёх прямых линий, лежащих в одной плоскости. В содержании этого понятия предусматриваются как возможные все существенные признаки всех частных видов треугольников — и остроугольных, и прямоугольных, и тупоугольных.
Но из всех этих признаков, характеризующих