Логика | страница 18



Итак, закон исключённого третьего простирается на все противоречащие высказывания, в том числе и на противоположные высказывания об одном единственном предмете. Напротив, по отношению к контрарным высказываниям закон этот обязательной силы не имеет.

§ 23. Так как закон исключённого третьего справедлив относительно всех противоречащих высказываний, то он так же, как и закон тождества и закон противоречия, может быть выражен общей формулой. Формула закона исключённого третьего: А есть либо В, либо не - В.

Смысл этой формулы следующий. Каков бы ни был предмет нашей мысли (А), предмет этот либо обладает известным свойством (В), либо не обладает им. Невозможно, чтобы ложным было как то, что предмет А обладает свойством В, так и то, что предмет А не обладает этим свойством. Истина непременно в одном из двух противоречащих высказываний. Никакое третье высказывание об отношении А к В и к не-В не может быть истинным.


Закон достаточного основания

§ 24. Четвёртый логический закон мышления — закон достаточного основания. Закон этот выражает то качество логического мышления, которое называется доказательностью. Согласно этому закону для того, чтобы признать высказывание о предмете истинным, должно быть указано достаточное основание. Напротив, не удовлетворяющим закону достаточного основания будет всякое высказывание, в котором утверждение выставляется без указания достаточного основания, в силу которого утверждаемое утверждается.

Доказательным будет такое рассуждение или такое мышление, в которых не только утверждается истинность известного положения, но вместе с тем указываются основания, в силу которых мы не можем не признать это положение истинным. Так, математик не просто утверждает, что сумма углов внутри треугольника евклидовой геометрии равняется двум прямым углам, но доказывает это своё утверждение, т. е. показывает, что, приняв систему определений и постулатов, лежащих в основе геометрии Евклида, мы не можем не согласиться с теоремой о равенстве суммы углов внутри плоского треугольника двум прямым. Так, астроном не просто приглашает нас поверить тому, что земля имеет форму, близкую к форме шара, но доказывает это положение посредством ряда наблюдений и доводов: например, наблюдая форму земной тени, надвигающейся на диск луны во время лунных затмений, или наблюдая постепенное погружение под горизонт сначала нижних, а затем средних и верхних частей удаляющегося в открытое море корабля.