Логика | страница 14



а отрицание – в другом. Если, говоря «Николаев умеет играть в шахматы», под уменьем разумеют только знание ходов, а во втором случае под теми же словами разумеют уменье опытного и искусного игрока, знающего теорию дебютов, искусного в обороне и нападении, то между утверждением и отрицанием не обязательно будет противоречие: возможно, что Николаев умеет играть в шахматы в первом смысле слова, но не умеет играть в том смысле какой имеется в виду во втором случае.

Учитывая возможность подобных случаев, логика формулирует закон противоречия так, чтобы было совершенно ясно, какие именно противоречия недопустимы в правильном мышлении. Логика поясняет, что несовместимые высказывания относятся к одному и тому же предмету, в одно и то же время в рассматривают предмет в одном и том же отношении.

§ 13. Подобно закону тождества, закон противоречия выражается общей формулой. Формула эта для закона противоречия будет: «суждения «А есть В» и «А не есть В» не могут быть в одно и то же время истинными».

Смысл этой формулы следующий: если мы узнали, что некоторый предмет А в числе своих свойств имеет некоторое свойство В, то нельзя утверждать, что тот же самый предмет А в то же самое время и в том же самом отношении не имеет этого свойства В.

§ 14. Всякое нарушение закона противоречия ведёт к тому, что между нашими высказываниями возникают неувязки, нарушается необходимая логическая связь.

При этом выражаемое законом противоречия запрещение противоречащих друг другу высказываний относится и к повседневному мышлению и к мышлению научному. Логическая непоследовательность не должна быть терпима ни в каких рассуждениях, речах и писаниях. Чем важнее для жизни научная теория, чем больше сторон жизни и интересов общества она охватывает, тем важнее, чтобы в теории этой не было логических противоречий.

§ 15. Закон противоречия в разъяснённом выше его смысле справедлив относительно всех противоположных друг другу высказываний, независимо от вида самой противоположности.

Противоположность между суждениями бывает либо противоречащая, либо контрарная. Противоречащей противоположность будет: а) в случае, если одно из противоположных высказываний общее, а другое – частное, и б) в случае, когда оба противоположных высказывания единичные. Например, высказывания «все планеты имеют атмосферу» и «некоторые планеты не имеют атмосферы» находятся между собой в отношений противоречащей противоположности: они друг другу противоположны, т. е. одно из них утверждает об одном классе предметов то, что об этом же классе предметов в то же самое время отрицает другое, но при этом одно из них – общее («все планеты имеют атмосферу»), другое же – частное