Шанс есть! Наука удачи, случайности и вероятности | страница 85
Ответы на такие вопросы обычно сопровождаются численной величиной – вероятностью. Но эта единичная величина зачастую маскирует собой ключевое различие между двумя несходными разновидностями неопределенности – между тем, чего мы не знаем, и тем, чего мы не можем узнать.
Неопределенность типа «не можем узнать» берет начало в процессах, которые протекают в реальном мире и результат которых кажется случайным для всех, кто их наблюдает: как ляжет игральная кость, где остановится колесо рулетки, в какой именно момент распадется конкретный атом в радиоактивном образце. Это мир «частотных» вероятностей: если достаточно долго бросать кости или пронаблюдать за достаточным количеством распадающихся атомов, можно получить неплохое представление об относительной частоте возможных исходов и выработать способ численной оценки их вероятности.
Неопределенность типа «не знаем» – штука более скользкая. Здесь играет роль личное неведение, а не простая универсальная случайность. Каков пол у еще не родившегося ребенка вашей беременной соседки? Это уже данность, так что случай сюда не вовлечен. Но вы пока не знаете, поэтому не уверены в ответе, для вас это – неопределенность. Если вы любите тотализатор, где разрешается делать ставки по ходу игры, вы можете задаться вопросом: кто победит в футбольном матче, который сейчас в самом разгаре? Его исход сейчас тоже определяется не одной лишь случайностью. И если вы внимательно следили за ходом игры, вы более уверены в ее исходе, чем ваш приятель, беспечно дремавший с начала матча. Добро пожаловать в царство байесовской статистики!
По подходу к этим двум различным типам неопределенности как раз и делятся фреквентисты (частотники) и байесианцы. Закоренелый фреквентист не желает заниматься неопределенностями типа «не знаем» и вообще какими бы то ни было вероятностными характеристиками, которые нельзя вывести из воспроизводимых экспериментов, генераторов случайных чисел, анализа случайных выборок населения и т. п. Напротив, байесианец без зазрения совести пользуется всякого рода априорной информацией – скажем, сведениями о характере голосования на предыдущих выборах – для того, чтобы заполнить пробелы. «Байесианцы с радостью приписывают ту или иную вероятность утверждениям о мире. Фреквентисты никогда так не делают, – объясняет Тони О’Хаган, специалист по статистике из британского Шеффилдского университета, занимающийся изучением байесовских методов. – Что такое байесовский подход? Мы пытаемся отвечать на вопросы, привлекая все данные, имеющие отношение к делу, даже если вклад каких-то из них зависит от субъективного суждения».