Прозрение | страница 35
Но как же тогда быть с топологическими изменениями? Они осуществляются мелкими шагами, плавно и направленно, например, преобразование пальцев конечностей копытных животных. У них есть все пять пальцев, но работают только один (лошадь) или два (корова, свинья), остальные «недоразвиты». При одиночном малом шаге постоянного их упражнения при жизни организма маловероятно, что сработает естественный отбор, так как такие изменения почти безразличны для выживания.
Рис. 7. Укладка ДНК в хромосоме
Если же принять концепцию алгоритма голосования, то это явление объясняется просто. При редупликации ДНК под давлением среды организма (например, с помощью гормонов), вынужденного все время напрягать или, наоборот, не напрягать какой-нибудь орган, соответствующие участки ДНК повторяются, переходя при размножении в наследственную память. Это приводит к топологической изменчивости. Даже в онтогенезе при детренировке, например, мышц они уменьшаются в размерах, но ведь их клетки все время заменяются новыми. Как же эти новые клетки запомнили состояние старых? Правда, клетки мышц, это не наследственные клетки организма. Но «давление» его внутренней среды, очевидно, действует на все его клетки одинаково. Конкретный механизм изменения числа одинаковых генов в онтогенезе пока не известен, но он, несомненно, существует.
Но появление качественно новой наследственной информации таким путем невозможно, например, нового алгоритма функционирования (фотосинтез и т. п.), так как необходимо появление новых генов, а не изменение количества существующих. Реальный механизм работы этого алгоритма в организмах, несомненно, более сложен, как и в случае алгоритма накопления опыта, и только в принципе должен соответствовать примитивному циклу исправления информации «при голосовании».
9. Точечные мутации полностью ликвидируются алгоритмом восстановления испорченной ими наследственной информации и не являются основным источником изменчивости всех структур организма.
Алгоритм восстановления испорченной информации, например, может быть воплощен в структуре хромосомы. Если в ДНК наследственная информация многократно повторена, то при её многократном свертывании при укладке в хромосому одинаковые участки легко могут оказаться друг против друга (Рис. 7).
Рисунок построен так, что с каждым этапом упаковки масштаб меняется. Цепь ДНК имеет толщину 2 nm, т.е. 2 нм (1 нм = 10>-9 м). Далее ДНК намотана на группу из 8 гистонов (это специальные белки присутствуют только в ядрах клеток). Эта группа названа – кор (глобула). Кор вместе с намотанной ДНК, которая закреплена на нем ещё одним гистоном (Н1), образует нуклеосому. Нуклеосомы образуют более крупную цепь (бусы) размером 11 нм. Затем эта цепь сворачивается в структуру, похожую на винтовую пружину диаметром 30 нанометров. Эта цепь сложена складками имеющими длину в среднем 300 нм. Эта уже довольно толстая цепь все-таки ещё очень длинная и представляется в виде нити диаметром 250 нм. И наконец, эта нить опять сворачивается в винтовую пружину диаметром 700 нанометров. И уже в таком виде она расположена в хромосоме. Но сама хромосома устроена тоже очень сложно. Во-первых, хромосом в геноме организма много (у человека более двух десятков). Принцип упаковки во всех хромосомах одинаков. Число генов в каждой хромосоме различно – от нескольких сотен до нескольких тысяч. Во-вторых, у неё много своих структурных элементов (перетяжки, ветвления, ядрышко и т.д.), роль которых ёще не выяснена до конца. Да и сами хромосомы имеют иногда большие различия у разных организмов, особенно, если они далеко разнесены в структуре общей классификации. Например, краб и человек. Эта упаковка позволяет разместить всю наследственную информация в ядре соматических клеток объемом 110 микрометров кубических. Отсюда получается диаметр ядра около шести микрометров.