Прозрение | страница 17
k и a – произвольные постоянные.
В теории информации k=1; a=2.
Но вернемся в термодинамику. Нет ли там такой же формулы? Случайных, необратимых явлений там сколько угодно. Да и сама термодинамическая система состоит из множества хаотически (случайно) движущихся частиц. В термодинамике эта формула аналогична, но k – постоянная Больцмана, a – основание натуральных логарифмов. Людвиг Больцман вывел формулу для термодинамической энтропии раньше К. Шеннона (на 60 лет), но последний, получил ее заново и для более общего случая. Это подтверждает универсальный характер понятия энтропии. Нет принципиальной разницы между информационной и термодинамической энтропией.
Но при выводе формулы Больцмана использовалось понятие изолированной термодинамической системы, а при выводе формулы Шеннона такого ограничения не накладывалось. Это несоответствие кажущееся и связано с тем, что термодинамика исторически всегда была связана с системами ограниченными по массе и объему. Это позволяло делать конкретные выводы и практические расчеты. «Анализ процессов, происходящих в изолированной системе, представляет интерес в большой мере потому, что в пределе любую изолированную систему и окружающую среду можно мысленно рассматривать как единую изолированную систему» [10]. Поэтому не приходится сомневаться в том, что необратимость присутствует не только в термодинамических системах, а и во всех других, где применима приведенная выше аксиома о точках бифуркации.
Опыт показывает, что многие люди не знают точного определения понятия «вероятность». Для них в приложении приведен простой пример расчета энтропии по приведенной выше формуле. Вероятность меняется от нуля до единицы (достоверное событие). В обиходе иногда принимают вероятность от нуля до ста процентов.
Вывод этой формулы сделан при учете только самых простых и общих предпосылок (рис. 1). При этом не вводились никакие энергетические ограничения. Поэтому из этой формулы следует, что энтропия всегда растет, в любых материальных системах. Причем расчет по этой формуле показывает, что скорость возрастания энтропии тем выше, чем ближе друг к другу вероятности перехода из точки бифуркации в возможные состояния. Например, – при P>1 = P>2 на рисунке 1.
В соответствии с этой формулой энтропия никогда не может самопроизвольно снижаться.
Взглянем ещё раз на формулу Шеннона. В каких единицах измеряется энтропия? Вероятности