Рассказы о математике с примерами на языках Python и C | страница 8




Современные формулы не столь просты внешне, зато работают еще быстрее. Для примера можно привести формулу Чудновского:

Для сравнения, те же 24 итерации по этой формуле дают число Пи со следующей точностью:

3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249.


Если сделать 100 итераций и вычислить 1000 знаков Пи, то можно увидеть так называемую “точку Фейнмана”:

3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420207


Это последовательность “999999”, находящаяся на 762м знаке от начала. Желающие могут поэкспериментировать дальше самостоятельно с помощью программы на языке Python:

from math import factorial

from decimal import *


def chudnovsky(n):

pi = Decimal(0)

k = 0

while k < n:

      pi += (Decimal(-1)**k)*(Decimal(factorial(6*k))/((factorial(k)**3)*(factorial(3*k)))* (13591409 + 545140134*k)/(640320**(3*k)))

      k += 1

print("Шаг: {} из {}".format(k, n))

pi = pi * Decimal(10005).sqrt()/4270934400

pi = pi**(-1)

return pi


# Требуемая точность (число знаков)

N = 1000

getcontext().prec = N


val = chudnovsky(N/14)

print(val)


Эта программа не оптимизирована, и работает довольно-таки медленно, но для ознакомления с сутью алгоритма этого вполне достаточно. Кстати, с помощью формулы Чудновского два инженера Александр Йи и Сингеру Кондо в 2010 году объявили о новом мировом рекорде вычисления Пи на персональном компьютере: 5 трлн знаков после запятой. Компьютеру с 12 ядрами, 97Гб памяти и 19 жесткими дисками потребовалось 60 дней для выполнения расчетов.