Рассказы о математике с примерами на языках Python и C | страница 22




Как оказалось, движение планет подчиняется 3м математическим законам:

1) Планеты движутся по эллиптическим орбитам, в одном из фокусов эллипса находится Солнце

2) Планеты движутся неравномерно: скорость планеты увеличивается при движении к Солнцу и уменьшается в обратном направлении. Но за равные промежутки времени вектор движения описывает равные площади: площади участков “А” одинаковы:

3) Квадраты периодов обращений планеты пропорциональны кубу расстояний до орбиты:


Кеплер считал, что весь мир подчиняется гармонии, и что солнечная система больше похожа на часовой механизм, чем на божественное творение. Найденные им законы не только красивы и гармоничны, но и совпали с реальными наблюдениями (уже позже выяснилось, что законы Кеплера могут быть выведены из законов Ньютона и закона всемирного тяготения, желающие могут найти доказательства в Википедии).


Что касается Марса, то его орбита более вытянутая, чем орбита Земли, чем и объясняется разница как в скорости движения, так и в яркости планеты. Картинка с сайта журнала “Наука и жизнь”:


Кстати, эта картинка хорошо объясняет, почему только некоторые годы благоприятны для запуска космических кораблей к Марсу - те годы, в которые расстояние между планетами минимально.

12. Парадоксы теории вероятности

На интуитивном уровне понимание теории вероятности довольно-таки просто. Возьмем кубик с 6 гранями, подбросим и посмотрим какая грань выпала. Интуитивно ясно, что вероятность выпадения 1 грани из 6 будет 1/6. Действительно, вероятностью называют отношение числа равновероятных событий к числу всех возможных вариантов:

Какова вероятность что выпадут 2 цифры подряд? Она равна произведению вероятностей: (1/6)*(1/6) = 1/36.

Вроде все просто, однако несмотря на простоту, есть довольно-таки много задач, где математика не всегда совпадает с бытовым “здравым смыслом”. Рассмотрим несколько таких парадоксов.


Дети мистера Смита


Эту задачу описывал Мартин Гарднер. Известно что у мистера Смита двое детей, и один из них мальчик. Какова вероятность, что второй из них тоже мальчик? Интуитивно кажется, что вероятность пола ребенка всегда равна 1/2, но не все так просто.

Рассмотрим возможные варианты семей с двумя детьми:

мальчик-мальчик

мальчик-девочка

девочка-мальчик

девочка-девочка

Исходя из списка вариантов, ответ понятен. Вариант “девочка-девочка” по условию не подходит. Всего остается 3 варианта семей где есть мальчик (М+М, М+Д, Д+М), значит вероятность что второй ребенок окажется мальчиком, равна 1/3.