Математический аппарат инженера | страница 11
7. Математические методы. После того как математическая модель построена, дальнейшая работа состоит в применении соответствующих математических методов с целью получения необходимых характеристик данной модели, а значит. И исследуемого реального объекта. Большое разнообразие математических методов можно свести к тем основным видам: аналитическим, графическим и численным.
Получение характеристик модели в аналитической форме желательно во многих отношениях. Преде всего, представляется возможным провести исследование в общем виде, независимо от численных значений параметров системы. Аналитические зависимости позволяют использовать эффективные методы оптимизации и получить соотношения, характеризующие поведение системы при изменении ее параметров. Не менее важно и то, что при подстановке в аналитические выражения численных значений можно контролировать точность вычислений. Однако аналитические методы применимы только для простейших моделей. Так, общее разложение определителя системы шести линейных уравнений содержит сотни членов, а для десяти уравнений число членов определителя может достигать нескольких миллионов, решения алгебраических уравнений выше четвертой степени в общем случае не представимы в радикалах. Из-за громоздкости аналитических выражений или невозможности их получения значение аналитических методов в инженерной практике сильно ограничивается. В то же время аналитическая форма является основной при изложении и развитии математического аппарата в общем виде.
Графические методы обладают наглядностью и успешно используются как для иллюстрации аналитических методов, так и непосредственно в инженерных расчетах. Они особенно удобны, если не требуется высокая точность или если интерес представляет качественная картина происходящих процессов. Например, графические построения на фазовой плоскости позволяют судить
- 15 -
о характере колебаний в системе, ее устойчивости и т.п. Графические методы используются при решении теоретико-множественных уравнений, минимизации логических функций, статистической обработке результатов наблюдений и во многих других случаях. Инженеры привыкли пользоваться графиками нелинейных характеристик компонентов и протекающих в системах процессов, полученных теоретически или экспериментально. К сожалению, графические методы ограничены возможностями построений на плоскости или в трехмерном пространстве, вследствие чего они применимы только для простых моделей. Особое место занимают методы теории графов, но и они теряют наглядность при усложнении модели. В практике инженерных расчетов графические методы часто используются совместно с аналитическими. В таких случаях их называют графоаналитическими методами.