По следам бесконечности | страница 9
В одной из индийских легенд о Будде рассказывается, будто бы еще в детстве он был подвергнут испытанию в математике и, постепенно переходя ко все более крупным числам, дошел до таких, которые изображали все песчинки, содержащиеся в миллионе (в переводе на современное исчисление) рек, подобных Гангу.
А вот с помощью какого сравнения описывает восточная притча вечность во времени: «Вот алмазная гора высотой в тысячу локтей. Раз в столетие прилетает птичка и точит свой клюв о гору. Когда она сточит всю гору, пройдет первое мгновение вечности».
В дальнейшем, с развитием математического счета, человек естественно и закономерно пришел к числовой бесконечности. Если прибавлять к единице единицу за единицей, мы будем получать все большие и большие числа. Но подобную операцию можно повторять сколько угодно раз. Значит, самого большого числа не существует? Значит, натуральный ряд не имеет, конца, он ничем не ограничен, он теряется где-то в необозримых числовых пространствах?..
Возможно, именно так, задумавшись над операцией последовательного прибавления единицы, наши предки однажды лицом к лицу столкнулись с проблемой коночного и бесконечного.
На первой ступени познание природы человеком носило созерцательный характер и было неотделимо от наглядных представлений о мире, от тех сведений, которые приносили об окружающем органы чувств и прежде всего зрение. Человек стремился выразить неизвестное через наблюдаемое известное, объяснить новые предметы через те, которые уже познаны. По мере дальнейшего развития науки развертывался обратный процесс — человек стал объяснять видимое через скрытое и невидимое.
Один из первых шагов в этом направлении совершили мыслители Древней Греции.
Древние греки и бесконечность
В VII–V веках до нашей эры поразительных успехов добилась греческая философия, которая дала науке целый ряд гениальных догадок и смогла подняться до постановки многих кардинальных проблем, сохранивших свою актуальность и до сегодняшнего дня.
Среди таких проблем, привлекавших внимание древнегреческих мыслителей, важное место занимала проблема бесконечного.
Именно тогда были заложены основы современной математической науки, которая стремится ответить не только на вопрос «как?», по и на вопрос «почему?». Этим математика греков с самого начала отличалась от математики Востока, где ученые почти не занимались теорией.
Вообще древние греки не выделяли математику из общего знания. Их философия была натурфилософией, охватывавшей и математику и физику. И потому первоначально философское и математическое понятия бесконечности были слиты в древнегреческой науке воедино.