По следам бесконечности | страница 30
Да в конце концов и не в том дело, кто именно из двух великих ученых внес в разработку основ математического анализа наибольший вклад. Гораздо важнее, что эти основы были заложены их выдающимися исследованиями.
Уже с 90-х годов XVII столетия математический анализ стал быстро распространяться и прививаться в форме, предложенной Лейбницем, которая была предпочтительнее, благодаря общности, удобству обозначений и подробной разработке различных приемов.
Новый метод оказался необыкновенно плодотворным, к тому же он открыл возможность разнообразных научных и практических приложений. Эти обстоятельства не могли не привлечь внимания многочисленных исследователей. И потому в следующем столетии математика развивалась исключительно бурно, отличаясь изобилием открытий и множеством оригинальных идей.
Снова кризис!..
Дифференциальное и интегральное исчисления — исчисления бесконечно малых — явились не только крупным достижением математики, но и важнейшим этапом в развитии всего естествознания и человеческой мысли вообще.
От абстрактных рассуждений о бесконечном древнегреческих философов человек перешел к практическим операциям с бесконечностями.
При этом характерно, что разработка нового математического метода была вызвана к жизни потребностями развивающихся физических наук, в первую очередь механики. Другими словами, этот скачок был обусловлен не только внутренней логикой развития самой математической науки, но прежде всего общим уровнем развития естествознания.
Если раньше решение тех или иных научных задач носило вполне очевидный, наглядный характер, то теперь впервые для этой цели стали использоваться величины, которые не только нельзя было представить себе непосредственно, по и природа которых отличалась явной неопределенностью и даже противоречивостью.
Дело в том, что теоретические основания исчисления бесконечно малых и Ньютоном и школой Лейбница были разработаны недостаточно четко. Далеко не безупречными были и руководящие идеи.
В частности, и у Ньютона и у Лейбница в одних и тех же вычислениях бесконечно малые принимались то за действительные величины, то за величины, равные нулю, которые затем просто-напросто отбрасывались. Считалось также, что прибавление бесконечно малого не изменяет конечного слагаемого.
Однако в то же время большинство математиков рассматривало бесконечно малое как наименьшее значение убывающей величины (то есть как актуально бесконечно малое). Но такое наименьшее значение должно быть заведомо больше нуля, следовательно, его отбрасывание — операция явно незаконная.