По следам бесконечности | страница 28



.

Исторические но своему значению математические исследования Ньютона и Лейбница развивались не совсем на пустом месте. В начале XVII столетия трудами Кеплера и Кавальери были заложены основы совершенно новой отрасли математики.

Иоганн Кеплер, который вошел в историю науки открытием законов движения планет, разработал метод операций с бесконечно малыми величинами, получивший название «интеграционного». Любую фигуру или тело он представлял в виде суммы бесконечного множества бесконечно малых частей. Например, круг, считал он, состоит из бесконечно большого числа бесконечно узких секторов. И хотя природа бесконечно малых у Кеплера оставалась невыясненной, этот метод имел большое значение для развития математики.

Как мы уже отмечали, похожий метод применял и Архимед. Однако письмо Архимеда к Эратосфену, в котором он излагал его сущность, было обнаружено лишь в начале XX столетия.

Аналогичный метод разрабатывал и Кавальери. Однако все это были только первые робкие шаги. Настоящее развитие операции с бесконечно малыми получили в трудах Ньютона.

Ньютон переменные величины называл флюентами. А отношение бесконечно малого прироста одной флюенты к соответствующему бесконечно малому приросту другой — флюксиями. В современной терминологии принято обозначение, введенное впоследствии Лейбницем, — дифференциал.

Ньютон прекрасно сознавал значение своего открытия и отчасти закрепил свой приоритет в этой области письмом к Коллинзу в декабре 1672 года. Коллинз был своеобразным центром научной переписки английских математиков с иностранными учеными.

В письме Ньютон сообщал о своем открытии, но лишь в самой общей форме — самого метода он не указывал и не объяснял, а только пояснял его несколькими примерами.

В октябре 1676 года Ньютон в письме к секретарю Королевского общества Ольденбургу вновь сообщил о своем новом методе и изложил его сущность в соответствии с научными обычаями того времени в зашифрованной особым образом строке. Шифр был не слишком сложен: числа, стоящие перед буквами, указывали, сколько раз эти буквы повторяются в тексте. При хорошем знакомстве с латинским языком расшифровать фразу было не так уж сложно: «Дано уравнение, заключающее в себе текущее количество (флюенты), найти течения (флюксии) и наоборот».

Более детальное изложение метода было зашифровано Ньютоном сложнее.

Впоследствии, когда свои работы по исчислению бесконечно малых опубликовал Лейбниц, между ним и Ньютоном вспыхнул спор о приоритете. Он длился на протяжении многих лет, но так, по существу, и не привел к каким-либо результатам. Историки до сих пор обсуждают этот вопрос, пытаясь выяснить, заимствовал ли Лейбниц свои идеи у Ньютона или разработал их самостоятельно.