Каким образом мы выяснили, сколько тратили клиенты Cisco на конкурентов? Давайте предположим, что в Чикаго имеются два архитектурных бюро с одинаковым оборотом и двадцатью пятью сотрудниками в каждом. Из своих баз данных мы знали, что фирма A&A тратит на приобретение информационных технологий 50 тысяч долларов в год (причем отдавая всю эту сумму Cisco). Также наши записи показывают, что бизнес с Cisco ведет и фирма B&B, перечисляющая компании за услуги 10 тысяч долларов в год. Cisco в точности не знает, сколько тратит на информационные технологии фирма B&B, однако понимает, что профиль компании очень похож на профиль деятельности ее конкурентов в A&A. Это означает, что Cisco с большой степенью вероятности может быть уверена, что B&B тратит 40 тысяч долларов из своего годового бюджета на информационные технологии, закупая их у кого-то еще. За эти тысячи имело смысл побороться.
Выстроенные нами статистические модели позволяли проводить сходную оценку в гораздо бо́льших масштабах, среди миллионов компаний по всему миру. Они давали нам возможность выявить клиентов-«джекпотов» в структуре «Ценностного спектра» и узнать о них побольше: что они покупали, в каких объемах, когда, по каким мотивам, какие еще продукты они приобрели – этот список может быть бесконечным.
Но даже в этом случае данные нужно было предоставлять ясным и простым образом. Мне доводилось выстраивать для своих клиентов массу довольно комплексных сегментационных структур, которые помогали выявлять наиболее потенциально прибыльных клиентов (о некоторых из этих структур мы поговорим позднее), но я почти всегда возвращался к старому доброму «Ценностному спектру» с его «джекпотами», «самородками» и прочими персонажами. Когда данные показываются подобным образом, выводы кажутся очевидными, а маркетологи довольно быстро понимают, каким образом их можно использовать.
Майку такой подход понравился. Он тут же понял, что такое простое изложение фактов, представленное в виде матрицы «два на два», способно идеально продемонстрировать всю силу баз данных, которые он уже несколько лет выстраивал в Cisco. Это не было теоретическим упражнением. Мы на самом деле привязали модель к реальной базе данных. Иными словами, если кто-то из продавцов захотел бы получить список «джекпотов» в Детройте, то мы могли предоставить ему список компаний с именами, телефонами и лицами, принимавшими решения. История получилась простой, но мощной.