Людвиг Больцман: Жизнь гения физики и трагедия творца | страница 28



, затраченная при этом работа идет на нагревание газа до исходной температуры Т>1, т, е. на увеличение внутренней энергии газа.

Из (11) видно, что отношение Q/T одинаково для обеих изотерм процесса.

>Рис.7. Произвольный циклический процесс 

Рассмотрим теперь произвольный циклический процесс (рис.7), верхнюю и нижнюю половину которого можно рассматривать как два возможных, но различных пути перехода тела из состояния 1 в состояние 2. Рассечем наш произвольный цикл сетью адиабат (адиабатными называются процессы, при которых газ не отдает и не получает теплоту, их аналогом были стадии 2-3 и 4-1 цикла на рис. 6). Каждый малый отрезок цикла между адиабатами можно в первом приближении рассматривать как изотермический и применять к нему соотношение (11). Следовательно, мы можем записать:

ΔQ>1/T>1 = ΔQ’>1/T’>1; ΔQ>2/T>2 = ΔQ’>2/T’>2 и т.д.,

где ΔQ и T относятся к верхней половине процесса, а ΔQ’ и T’к нижней. Просуммируем эти равенства по всем отрезкам:

Очевидно, что

Получен интересный результат. Для произвольных, но обратимых процессов изменение величины

ΔQ/T

при возвращении тела в исходное состояние равно нулю:

На пути 1-2 изменение ∑ΔQ/T равно по модулю и противоположно по знаку изменению ∑ΔQ/T пути 2-1. Но тогда можно записать и такое равенство:

т. е. утверждать, что состояния 1, 2 или любое другое характеризуются некоторым значением величины S>1, S>2, подобно тому как они имеют определенные энергии E>1, Е>2и т. д. Эту новую характеристику состояния Клаузиус предложил называть энтропией, от греч. «тропэ» — превращение.

Однако полностью обратимые процессы являются лишь физической идеализацией, так как в любых реально протекающих процессах всегда существуют, как мы это уже показали, необратимые потери энергии (при нагревании трущихся поверхностей, связанные с выхлопом части нагретого пара в окружающее пространство и т.д.). Естественно, что для необратимых процессов закон сохранения энтропии уже не имеет места, и изменение энтропии замкнутой системы можно рассматривать как меру необратимости совершившегося в ней процесса. В приведенных примерах окружающая среда может считаться бесконечно большой, т. е. ее температура при передаче ей теплоты не изменяется. Следовательно, в необратимых процессах изменение энтропии внешней среды ΔS > 0. Именно так выглядит в трактовке Клаузиуса второй закон термодинамики.

Удивительная судьба оказалась у новой физической величины — энтропии S, введенной Клаузиусом в 1854 г. Несмотря на то что с ее помощью Клаузиусу удалось придать математический вид второму закону термодинамики, физический смысл энтропии долгое время оставался непонятным. В отличие от других физических величин, например давления