Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт | страница 46



«Квантизировать» — значит поставить условие, что классические величины, такие как энергия или угловой момент, должны быть кратны постоянной Планка. Именно это сделал Бор в своей модели атома 1913 года с взаимообменом энергии при переходе электронов с одной орбиты на другую; эту формулировку Зоммерфельд расширил до эксцентриситета таких орбит и углового момента их прецессии. Чтобы не повторять все три случая, посмотрим, как принцип соответствия применяется к случайной классической проблеме гармонического осциллятора.

Представим себе классический гармонический осциллятор; например, колеблющуюся пружину. Энергия этой пружины зависит от ее амплитуды (A), массы (m) и угловой частоты колебания (ω) следующим образом:

E = mω>2A>2/2.

Для квантового осциллятора, напротив, тот же самый процесс, описываемый этим уравнением (после введения условия квантизации, то есть постоянной Планка), имеет форму

E = (n + 1/2)ħω,

где n — квантовое число (0, 1, 2, 3); ħ — кратное постоянной Планка, известное как «редуцированная постоянная Планка» (а именно ħ = h/2π), а ω — угловая частота колебания.

Принцип соответствия требует, чтобы для больших квантовых чисел результат квантового выражения совпадал с результатом, предоставляемым классической физикой. Если сравнить оба выражения, можно увидеть, что для n порядка 10>33 оба выражения совпадают. Для большей ясности рассмотрим следующий пример: у пружины массой 1 кг при угловой частоте 1 рад/с и амплитуде 1 м энергетическая разница между двумя последовательными уровнями энергии будет порядка 10>-34 Дж, то есть абсолютно ничтожной на макроскопическом уровне.

В этом месте возникает сомнение. Действительно ли принцип соответствия — тот принцип, который искал Бор? Он больше похож на очень элегантный способ утвердить специально введенный элемент (постоянную Планка) в классических моделях. И действительно, так оно и есть. Хотя принцип соответствия использовался и продолжает использоваться для вычисления спектров излучений различных квантовых явлений, его научно-философский статус проблематичен, поскольку он не выводит постоянную Планка, а навязывает. С определенными оговорками эта постоянная навязана классической модели извне.


КРИЗИС ПЕРВОЙ КВАНТОВОЙ ФИЗИКИ

В книгах по истории квантовой физики обычно говорится о двух периодах: различают «старую» и «новую» квантовую физику. Принцип соответствия принадлежит первой из них, главная характеристика которой — постоянная попытка поддерживать тесную связь между квантовым миром и классическим. Одной из этих связей была возможность вообразить модели для представления физических данных. Вспомним: большой прорыв Бора, сформулировавшего атомную модель, состоял в отказе от мысли о том, что излучение электронов — результат их движения по определенной орбите (как этого требовала классическая электродинамика), и предположении, что испускаемая энергия есть итог перехода с одной орбиты на другую. Однако в обоих случаях оставались два центральных понятия: «орбита» и «модель атома».