Магия математики: Как найти x и зачем это нужно | страница 32



3456 = (3 × 1000) + (4 × 100) + (5 × 10) + 6 = 3(999 + 1) + 4(99 + 1) + 5(9 + 1) + 6 = 3(999) + 4(99) + 5(9) + 3 + 4 + 5 + 6 = (число, кратное 9) + 18 = число, кратное 9

Следуя той же логике, любое число, сумма цифр которого кратна 9, само должно быть кратно 9 (и наоборот: любое число, кратное 9, при сложении составляющих его цифр даст нам результат, кратный 9).

Вычисление вычета по модулю 9

А что, если сумма цифр нашего числа все-таки не кратна 9? Возьмем, например, число 3457. Следуя алгоритму, означенному чуть выше, мы можем представить 3457 (сумма цифр которого равна 19) как 3(999) + 4(99) + 5(9) + 7 + 12, то есть 3457 – это 7 + 12 = 19, что чуть больше, чем кратное девятке 18. А если 19 = 18 + 1, значит, и 3457 ровно на единицу больше ближайшего кратного 9 числа. К тому же выводу можно прийти, сложив цифры числа 19, потом – цифры числа 10, то есть вот какая последовательность у нас получается:

3457 → 19 → 10 → 1

Процесс сложения между собой цифр числа и повторение этой операции до тех пор, пока не получится однозначное число, называется вычислением вычета по модулю 9, ведь на каждом этапе вы занимаетесь тем, что вычитаете число, кратное 9. Получаемое в итоге однозначное число называется цифровым корнем изначального числа. Например, числовой корень 3457 – 1, а 3456 – 9. Давайте попробуем вкратце суммировать все сказанное. Для каждого натурального n:

Если цифровой кореньnравен 9,nкратно 9.
В ином случае цифровой корень будет равен остатку, получаемому от деленияnна 9.

Алгебраически, обозначив цифровой корень числа n как r, получаем:

n= 9x+r

где x – целое число. Вычисление вычета по 9 – забавный способ проверить результаты, полученные в результате сложения, вычитания и умножения. Например, сумма верна, если ее цифровой корень равен сумме цифровых корней складываемых чисел. Хотите конкретнее? Давайте посчитаем



Обратите внимание, что цифровые корни слагаемых чисел равны 5 и 6, а цифровой корень их суммы (11) равен 2. И совсем не случайно, что цифровой корень результата (134 651) тоже имеет цифровой корень, равный 2. Причина всего это кроется в следующей алгебраической формуле:

(9x+r>1) + (9y+r>2) = 9(x+ y) + (r>1+r>2)

Если числа не совпадают, вы наверняка где-то ошиблись. И вот что важно: даже если числа совпадают, это еще не значит, что ответ верный, хотя в 90 % случаев проверка результата цифровыми корнями работает безотказно и позволяет быстро найти ошибку. Однако, случайно поменяв местами две цифры, вы этого не заметите, ведь сумма цифр от этого не изменится. А вот появление неправильного числа говорит об ошибке, если только ошибка не связана с заменой 0 на 9 или 9 на 0. Этот же метод можно использовать, когда нам нужно сложить друг с другом длинный столбец чисел. Представим, вы зашли в магазин и купили несколько продуктов по следующим ценам: