Магия математики: Как найти x и зачем это нужно | страница 23



97 × 87 = (100 – 3)(100 – 13) = (100 × 84) + (3 × 13) = 8400 + 39 = 8439

Этот же метод можно применить к парам чисел, одно из которых чуть меньше, а другое – чуть больше 100, только в конце вместо сложения вам нужно произвести вычитание. Например,

109 × 93 = (100 + 9) (100 – 7) = (100 × 102) – (9 × 7) = 10 200 – 63 = 10 137

И опять же, число 102 можно получить двумя способами: либо из 109 – 7, либо из 93 + 9, либо из 109 + 93 – 100 (ну и четвертый вариант – сложить последние цифры начальных чисел: 9 + 3 скажут нам, что число будет заканчиваться на 2, и этой информации может быть вполне достаточно). Практикуясь, вы научитесь легко перемножать близкие друг к другу числа. Посмотрите на несколько несложных примеров с трехзначными числами. Имейте в виду, что a и b здесь числа, в которых больше одного знака.

218 × 211 = (200 + 18)(200 + 11) = (200 × 229) + (18 × 11) = 45 800 + 198 = 45 998
985 × 978 = (1000 – 15) (1000 – 22) = (1000 × 963) + (15 × 22) = 963 000 + 330 = 963 330

Поиски x

Чуть выше мы видели несколько примеров решения уравнений с помощью золотого правила алгебры. Если уравнение содержит только одно неизвестное (скажем, x) и обе его части – линейные (что значит, что в них есть х или кратные ему величины, но при этом это единственная их сложность – никаких x²), найти x несложно. Например, чтобы решить уравнение

9x – 7 = 47

мы можем к его левой и правой части сначала добавить 7 и получить 9x = 54, а потом разделить обе части на 9 и получить искомое: x = 6.

Или вот другой пример, чуточку сложнее:

5x+ 11 = 2x+ 18

Сначала мы упростим его, убрав из обеих частей 2x, а потом (ну или вместе с первым шагом, если хотите) 11, что приводит нас к

3x= 7

решением же будет x = 7/3. В конечном итоге любое уравнение можно свести к ax = b (или ax – b = 0) и его решению x = b/a (исходя из того, что a ≠ 0).

Ситуация немного запутывается, если мы имеем дело с квадратным уравнением (в котором на авансцене появляется x²). Самый простой вариант квадратного уравнения:

x² = 9

которое имеет два решения: x = 3 и x = –3. И даже когда правая сторона уравнения не является квадратом простого числа, вроде

x² = 10

у нас все еще есть два решения: x = √10 = 3,16… и x = – √10 = –3,16… В принципе, если n > 0, число √n – квадратный корень из n – обозначает положительное число с квадратом n. Если n не является квадратом целого числа, √n легче всего посчитать на калькуляторе.

Отступление

А как насчет уравнения x² = –9? Пока мы вынуждены сказать, что оно не имеет решения: ведь не существует