Магия математики: Как найти x и зачем это нужно | страница 21



. Бросьте две игральные кости и посмотрите таблицу, которая приведена чуть ниже. Допустим, вы выкинули 6 и 3. На обратных сторонах костей будет, соответственно, 1 и 4.



В нашем примере результат будет равен 49. И сколько бы вы ни бросали обычные шестигранные кости, результат будет тот же. Дело в том, что сумма чисел на противоположных сторонах стандартной игральной кости всегда равна 7. То есть если обозначить выпавшие числа буквами x и y, их парами будут 7 – x и 7 – y. Алгебра переделывает нашу таблицу таким вот образом:



Обратите внимание на подсчет в третьей строке (–x и – y при умножении дают xy со знаком плюс). К результату 49 можно прийти и другим, менее алгебраическим, способом: достаточно просто посмотреть на второй столбец таблицы и увидеть там те самые четыре числа, которые нужны нам для «запуска» FOIL: (x + (7 – x))(y + (7 – y)) = 7 × 7 = 49.

На уроках алгебры правило FOIL обычно применяют для решения таких, например, задач:

(x+ 3)(x +4) =x²+ 4x+ 3x+12 =x² + 7x +12

В крайней правой части число 7 (которое в этом случае называется коэффициентом числа х) есть сумма 3 и 4; 12 же (здесь он будет постоянным членом) – их произведение. Ну а получить ответ с нашим-то опытом – дело элементарное: так как 5 + 7 = 12, а 5 × 7 = 35, получаем

(x+ 5)(x +7) =x² + 12x+ 35

С отрицательными величинами это тоже отлично работает, и вот тому подтверждение: в нашем первом примере мы начинаем с того, что 6 + (–2) = 4, а 6 × (–2) = –12.

(x+ 6)(x – 2) =x² + 4x – 12
(x+ 1)(x – 8) =x² – 7x – 8
(x – 5)(x – 7) =x² – 12x+ 35

А вот примеры, когда известные числа у нас одинаковые:

(x+ 5)² = (x+ 5)(x+ 5) =x² + 10x+ 25
(x – 5)² = (x – 5)(x – 5) =x² – 10x+ 25

Обратите внимание, кстати, что (x + 5)² ≠ x² + 25: ошибку эту делают почти все, кто только начинает познавать азы алгебры. Но куда интереснее обстоят дела, когда у нас есть два одинаковых числа с разными знаками. Например, так как 5 + (–5) = 0,

(x+ 5) (x – 5) =x² + 5x – 5x – 25 =x² – 25

Главное, что нужно запомнить – формула разности квадратов двух переменных:

(x+y)(x – y) =x² –y²

Мы уже пользовались ей в главе 1, в примере, когда учились в уме возводить в квадрат числа. Способ этот основан на алгебраической формуле:

A² = (A+d)(A – d) +d²

Сначала давайте удостоверимся в правильности этой формулы. В отличие от формулы квадратов здесь мы имеем [(A + d)(A – d)] + d² = [A² – d²] + d² = A². Стало быть, это действительно для всего диапазона значений A и d. На практике буквой