Занимательная астрофизика | страница 15



Иное дело радиоволны, длина которых значительно больше. При обработке зеркал, которые должны собирать такие волны, — антенн радиотелескопов — вполне можно удовлетвориться и значительно меньшей точностью. Поэтому антенны современных радиотелескопов обладают намного большими размерами, чем зеркала телескопов оптических.

Иногда радиотелескопы строят с неподвижными антеннами, направленными в определенный участок неба. Но, благодаря суточному вращению Земли, через этот участок за 24 часа проходит целая полоса небесной сферы.

Хотя создавать телескопы с неподвижными антеннами и проще, у таких инструментов есть определенные недостатки. С их помощью за сутки можно «просмотреть» лишь узкую полоску неба, в которую заведомо не попадет большая часть радиоисточников, интересующих наблюдателя. Но и те радиоисточники, которые окажутся в этой полоске, будут находиться в зоне приема всего какую-нибудь минуту. А этого явно недостаточно.

Более широкими возможностями обладают радиотелескопы с полноповоротными антеннами, которые можно направлять в любую точку небесной сферы, расположенную в данный момент над горизонтом, и вращать вслед за ее суточным перемещением по небу.

Принцип работы радиотелескопа довольно прост. Электромагнитное излучение, приходящее из космоса, отражается от поверхности приемного «зеркала» радиотелескопа и собирается в его фокусе. В этом месте находится непосредственный «съемник энергии» сфокусированных радиоволн — облучатель: антенна небольших размеров типа хорошо всем знакомого телевизионного приемного диполя.

Но аппаратура для регистрации принятых сигналов достаточно сложна. Она должна обладать очень высокой чувствительностью и создавать минимальные «шумы», мешающие приему слабых сигналов. При ее конструировании используются новейшие достижения радиоэлектроники.

Из разных точек

Как уже было отмечено выше, одна из главных задач наблюдательной астрономии — всемерное повышение разрешающей способности инструментов, с помощью которых ведутся наблюдения космических объектов. В этом отношении радиоастрономия на протяжении длительного времени значительно отставала от своей старшей сестры — астрономии оптической.

Из уже знакомой нам формулы, определяющей значение разрешающей способности для данного инструмента и принимаемого излучения, следует, что чем короче длина волны этого излучения, тем легче добиться более высокой степени разрешения.

Разрешающая способность большого оптического телескопа при благоприятных условиях наблюдения — меньше одной секунды дуги. Но поскольку длина световых волн составляет миллионные доли сантиметра, а радиоволн — сантиметры и метры, для получения такого же разрешения с помощью радиотелескопов потребовались бы колоссальные приемные антенны поперечником в сотни километров.