Величайшие математические задачи | страница 30





Теперь мы можем сделать некоторые грубые оценки. Я мог бы быть более точным, но этого вполне достаточно. Число ячеек в таблице составляет 9 × 9 = 81. Около половины чисел в этих ячейках находятся в левом верхнем треугольнике. Благодаря симметрии все числа, кроме лежащих на диагонали, имеют симметричную пару, так что число независимых ячеек составляет примерно 81/4, т. е., округляя, 20. В интервале от 6 до 30 содержится 13 четных чисел, поэтому 20 (и даже больше) выделенных чисел могут принимать лишь 13 четных значений. Это значит, что в данном диапазоне потенциальных сумм двух простых больше, чем четных чисел. Представьте, что вы на ярмарке и вам нужно 20 мячиками поразить 13 мишеней. Согласитесь, что шанс попасть в большую часть из них у вас будет неплохой. Тем не менее по нескольким вы можете и промазать. Иными словами, не исключено, что некоторых четных чисел все же будет не хватать.

В данном случае все числа на месте, но практические аргументы такого рода не позволяют полностью исключить подобную возможность. Однако из этого примера видно, что перекрытий должно быть немало: ведь одни и те же выделенные числа встречаются в интересующей нас четверти таблицы по несколько раз. Почему? Потому что 20 сумм должны уложиться в множество, где всего 13 членов. Поэтому каждое выделенное число в среднем встречается в таблице 1,5 раза. (Реальное количество сумм — 27, и более точная оценка показывает, что каждое выделенное число встречается дважды.) Если же каких-то четных чисел в таблице не хватает, то перекрытие должно быть еще больше.

Можно сыграть в ту же игру в более широком диапазоне, с более высоким верхним пределом — скажем, до одного миллиона. Формула, известная как теорема о распределении простых чисел (см. главу 9), дает нам возможность подсчитать количество простых чисел в интервале до любого заданного числа x. Эта оценка — x/log x. В интервале до 1 000 000 количество простых оценивается по этой формуле в 72 380. (Точное их число 78 497.) Серый фон занимает около четверти соответствующей таблицы, поэтому в нем примерно n²/4 = 250 млрд выделенных чисел — столько в этом диапазоне возможных сумм двух простых. Это намного больше, чем количество четных чисел в этом же диапазоне (их полмиллиона). Теперь перекрытие должно быть гигантским, а суммы должны возникать в среднем по 500 000 раз каждая. Так что шанс на то, что какое-то четное число окажется пропущено, многократно снижается.