Величайшие математические задачи | страница 28



Из бинарной гипотезы автоматически следует тернарная, но не наоборот{4}. Есть смысл рассматривать эти гипотезы по отдельности, поскольку мы до сих пор не знаем точно, верна ли хоть одна из них. Но, похоже, тернарная проблема немного проще, в том смысле что продвинуться в этом направлении удалось заметно дальше.

Бинарную гипотезу Гольдбаха для малых чисел можно подтвердить несложными вычислениями:

4 = 2 + 2;

6 = 3 + 3;

8 = 5 + 3;

10 = 7 + 3 = 5 + 5;

12 = 7 + 5;

14 = 11 + 3 = 7 + 7;

16 = 13 + 3 = 11 + 5;

18 = 13 + 5 = 11 + 7;

20 = 17 + 3 = 13 + 7.

Несложно продолжить ряд примеров вручную, скажем, до 1000 или около того, а можно и дальше, если хватит терпения. К примеру, 1000 = 3 + 997, а 1 000 000 = 17 + 999 983. В 1938 г. Нильс Пиппинг проверил бинарную гипотезу Гольдбаха для всех четных чисел вплоть до 100 000.

При этом выявилась общая тенденция: чем больше само число, тем больше способов представить его в виде суммы простых. Это отвечает здравому смыслу. Если вы возьмете большое четное число и начнете вычитать из него по очереди простые числа, с какой вероятностью все результаты этих действий окажутся составными? Достаточно в списке разностей появиться хотя бы одному простому числу, — и можно считать, что гипотеза для исходного числа подтверждена. Обратившись к статистическим свойствам простых чисел, можно оценить вероятность такого исхода. В 1923 г. аналитики Харольд Харди и Джон Литлвуд проделали такую операцию и вывели правдоподобную, но нестрогую формулу для числа способов представления заданного четного n в виде суммы двух простых чисел: это число приблизительно равно n/[2 (log n)²]. Это число увеличивается с ростом n и, кроме того, хорошо согласуется с числовыми данными. Но даже если математикам удалось бы сделать эту формулу точной, невозможно было бы исключить возможность того, что из нее существуют очень редкие, но все же исключения, так что формула не слишком помогает.

Основное препятствие, мешающее доказать гипотезу Гольдбаха, заключается в том, что она сочетает в себе две очень разные характеристики. Простые числа определяются через умножение, а в самой гипотезе речь идет о сложении. Поэтому необычайно трудно соотнести желаемый вывод с каким бы то ни было разумным свойством простых чисел. Такое впечатление, что рычаг просто некуда вставить. Должно быть, эти слова звучали настоящей музыкой в ушах владельцев издательства Faber & Faber, когда в 2000 г. они пообещали премию в 1 000 000 долларов за доказательство гипотезы. Сделано это было ради продвижения романа Апостолоса Доксиадиса «Дядя Петрос и проблема Гольдбаха»