Человеческий суперорганизм | страница 67
Как отмечалось во введении, люди обладают не особо впечатляющим количеством собственных генов (то есть генов, свойственных нам как млекопитающим), и сами по себе эти гены не способны поддержать существование человека. Вот почему наш второй, микробиомный, геном не роскошь, а необходимая и фундаментальная часть нашего бытия. Гены тем не менее в некотором отношении напоминают электричество в современном мире. Оно позволяет нам делать удивительные вещи, например освещать и обогревать дома и квартиры, но пользу оно приносит только в том случае, если мы имеем возможность подключиться к его источнику (электросети).
Оснащение дома или квартиры электропроводкой дает нам лишь потенциальную возможность использования электричества, в частности освещать помещение или пользоваться электроприборами. Для этого нужно еще установить щиток с пробками-предохранителями, розетки и выключатели. Если дом подключен к электросети, но в нем нет предохранителей, выключателей и розеток, никакой пользы от его оснащения электропроводкой не будет. Электричество для вас недоступно, есть лишь потенциальная возможность его использования. Точно такая же ситуация и с генами. Достались ли они нам от млекопитающих, микробов или космических пришельцев, если их нельзя включить, в любом случае работать они не будут.
Нашему организму повезло больше, чем дому, который специалист-электрик должен оснастить выключателями и розетками: человеческий геном оснащен ими изначально. К тому же работа этих «выключателей» не требует от нас никаких физических усилий, ими не нужно щелкать или вертеть их из стороны в сторону. Их работу обеспечивают химические процессы. Существует несколько различных типов химических выключателей генов. В понимании механизмов их работы и их усовершенствовании — одна из главных задач новой биологии и будущее медицины.
Способность управлять включением и выключением гена на разных стадиях развития организма и выработкой продуктов, осуществляемой под его контролем, может означать вопрос здоровья и болезни или даже жизни и смерти. Для примера рассмотрим выработку гемоглобина — белка крови, переносящего кислород. Без надлежащего снабжения кислородом клетки и ткани нашего тела обречены на гибель. Оказывается, у человека имеется несколько разных типов гемоглобина, точно «скроенных» для различных стадий его жизни и удовлетворения кислородных потребностей тканей на этих стадиях. Продукция эмбрионального, плодного и «взрослого» гемоглобина находится под контролем эпигенетических переключений генов. Их включение и выключение точно приурочено к началу и концу различных стадий развития, ибо только в этом случае может быть обеспечена жизнедеятельность организма. Ученые установили, что эти переключения генов и выработку гемоглобина контролирует бутират натрия, низкомолекулярный метаболит одной из кишечных бактерий. Сегодня проводятся испытания бутирата натрия и родственных ему химических соединений с целью их возможного использования для лечения серповидно-клеточной анемии, бета-талассемии и других заболеваний, связанных с нарушением синтеза гемоглобина. При этих болезнях ткани нередко недополучают кислород. Бутират натрия способен повышать в крови уровень гемоглобина с высоким сродством к кислороду. Очевидно, микробиом играет важную биологическую роль в управлении переключениями генов.