Рассказы о математиках | страница 9
В «Началах» Евклида дан образец дедуктивного изложения геометрического материала на основе предпосланной системы аксиом и других достоверных истин.
Архимед (Ок. 287–212 гг. до н. э.)
О жизни Архимеда известны только отрывочные сведения, которые дошли до нас благодаря древним писателям Цицерону, Плутарху и др. Из их работ узнаем, что Архимед родился в 287 году до новой эры в Сицилии и на 75-м году жизни был убит римским воином при взятии римлянами Сиракуз.
В своих математических работах Архимед, предвосхитив идеи современного математического анализа, остроумно решал задачи на вычисление длин кривых, площадей и объемов. В частности, пользуясь своими оригинальными методами, он нашел площадь сегмента параболы.
Архимеду принадлежит ряд замечательных изобретений. Он изобрел машину для орошения полей (архимедов винт). Впервые для поднятия тяжестей стал применять систему рычагов и блоков. Дал способ определения состава сплавов путем взвешивания в воде и т. д.
До нас дошли следующие сочинения Архимеда: две книги «О шаре и цилиндре», «Об измерении круга», «О коноидах и сфероидах», «О спиралях», две книги «О равновесии плоскости», «О числе песчинок», «О квадратуре параболы», «Послание Эратосфену о некоторых теоремах механики», две книги «О плавающих телах», «Отрывки».
В своем небольшом сочинении «О числе песчинок» Архимед решает вопрос о представлении какого угодно большого числа, не употребляя при этом ни нуля, ни показателя степени. За основание своего исчисления он берет число 10.
«Некоторые люди, о царь Гелон, — пишет Архимед в указанном сочинении, — воображают, что число песчинок бесконечно велико.
Я говорю не о песке, находящемся в Сиракузах или во всей Сицилии, но о песке всей суши: как обитаемой, так и необитаемой. Другие признают это число, правда, не неограниченным, но все же думают, что оно больше всякого задуманного числа. Если бы эти люди представили себе кучу песка, величиной в земной шар, причем этим песком были бы покрыты все моря и все углубления до вершины величайших гор, то, конечно, люди тем более были бы склонны принять, что нет числа, превосходящего число песчинок в этой куче.
Я, однако, приведу доказательства, с которыми и ты согласишься, что я в состоянии назвать некоторые числа, не только превосходящие число песчинок в куче, равной земному шару, но даже число песчинок в куче, — равной всей Вселенной».
(Под Вселенной здесь подразумевается шар, центр которого находится