Рассказы о математиках | страница 30
Характерно, что поток «решений» теоремы Ферма, как указывает тот же Литцман, шел преимущественно от лиц, непосредственно не занимавшихся математикой (гимназистов, студентов, инженеров, людей свободных профессий). Они не представляли всей серьезности проблемы и не подозревали, какой квалификации она требует от исследователя. Однако позднее эти люди заметно потеряли интерес к теореме Ферма, в особенности после инфляции, обесценившей обещанную сумму.
С именем Ферма связано также его знаменитое предложение, известное в современной литературе под названием «малой» теоремы Ферма. Читается эта теорема так: если целое число п не делится на простое число р, то п>р — 1—1 делится на число р.
Эта теорема приводится во всех руководствах по теории чисел и доказывается различными способами.
Ферма принадлежит также попытка найти формулу простых чисел. Так, он ошибочно считал, что такой формулой является
Действительно, при п = 0, 1, 2, 3, 4 р=3, 5, 17, 257, 65 837, т. е. р является простым числом. Однако через сто лет Эйлер показал, что уже при п = 5 р = 4 294 967 297. В этом случае р не является простым числом, так как оно делится на 641.
На других оригинальных теоремах и задачах Ферма по теории чисел останавливаться не будем. Но и этого вполне достаточно, чтобы сделать вывод, что Ферма внес большой вклад в теорию чисел и является одним из ее создателей.
Ферма наряду с Декартом явился основоположником аналитической геометрии, при этом надо заметить, что в этой области Ферма ранее Декарта, к тому же в более систематической форме, изложил метод координат, вывел уравнение прямой и кривых второго порядка, а также наметил пути доказательства, что все кривые второго порядка являются коническими сечениями.
Большие заслуги принадлежат Ферма в области математического анализа, где он дал общий закон дифференцирования степени и применил его к дифференцированию дробных степеней, вывел общее правило для отыскания максимумов и минимумов, распространил формулу интегрирования степени на случай дробных и отрицательных показателей.
Ферма был и физиком. В области физики он, например, сформулировал так называемый «принцип Ферма»-основной принцип геометрической оптики, согласно которому световой луч распространяется по такому пути, для которого время прохождения луча минимально (или максимально) по сравнению с любым другим возможным путем.
Из этого принципа Ферма выводятся широко известные законы отражения и преломления света.