Выразительный JavaScript | страница 29
Конечно, мы не должны сразу же полностью игнорировать быстродействие. Во многих случаях, как с возведением в степень, особой простоты от элегантных решений мы не получаем. Иногда опытный программист сразу видит, что простой подход никогда не будет достаточно быстрым.
Я заостряю на этом внимание оттого, что слишком много начинающих программистов хватаются за эффективность даже в мелочах. Результат получается больше, сложнее и часто не без ошибок. Такие программы дольше писать, а работают они часто не сильно быстрее.
Но рекурсия не всегда лишь менее эффективная альтернатива циклам. Некоторые задачи проще решить рекурсией. Чаще всего это обход нескольких веток дерева, каждая из которых может ветвиться.
Вот вам загадка: можно получить бесконечное количество чисел, начиная с числа 1, и потом либо добавляя 5, либо умножая на 3. Как нам написать функцию, которая, получив число, пытается найти последовательность таких сложений и умножений, которые приводят к заданному числу? К примеру, число 13 можно получить, сначала умножив 1 на 3, а затем добавив 5 два раза. А число 15 вообще нельзя так получить.
Рекурсивное решение:
>function findSolution(target) {
> function find(start, history) {
> if (start == target)
> return history;
> else if (start > target)
> return null;
> else
> return find(start + 5, "(" + history + " + 5)") ||
> find(start * 3, "(" + history + " * 3)");
> }
> return find(1, "1");
>}
>console.log(findSolution(24));
>// → (((1 * 3) + 5) * 3)
Этот пример не обязательно находит самое короткое решение – он удовлетворяется любым. Не ожидаю, что вы сразу поймёте, как программа работает. Но давайте разбираться в этом отличном упражнении на рекурсивное мышление.
Внутренняя функция >find
занимается рекурсией. Она принимает два аргумента – текущее число и строку, которая содержит запись того, как мы пришли к этому номеру. И возвращает либо строчку, показывающую нашу последовательность шагов, либо >null
.
Для этого функция выполняет одно из трёх действий. Если заданное число равно цели, то текущая история как раз и является способом её достижения, поэтому она и возвращается. Если заданное число больше цели, продолжать умножения и сложения смысла нет, потому что так оно будет только увеличиваться. А если мы ещё не достигли цели, функция пробует оба возможных пути, начинающихся с заданного числа. Она дважды вызывает себя, один раз с каждым из способов. Если первый вызов возвращает не