4a. Кинетика. Теплота. Звук | страница 38



представляет собой синусоидальную волну, которая затем от­ражается. Тогда отраженная волна -F(-х-ct) тоже будет синусоидальной волной той же частоты, но пойдет она в про­тивоположном направлении. Эту ситуацию проще всего опи­сать с помощью комплексных функций

F(x-ct)=e>i>w>(>t>->x>/>c>) и F(-х-ct)=e>i>w>a>(>t>+>x>/>c>).

Нетрудно убедиться, что если подставить их в выражение (49.2) и положить х=0, то в любой момент времени t переме­щение будет равно нулю и, следовательно, необходимое условие окажется выполненным. Воспользовавшись теперь свойством экспоненты, можно записать результат в более простом виде:

y=e>i>w>t(e>-i>w>x/c-e>i>w>x/c)=-2ie>i>w>tsin(wx/c). (49.3)

Мы получили нечто новое и интересное. Из этого решения ясно, что если мы посмотрим на любую точку х нашей струны, то увидим, что она осциллирует с частотой w. Совершенно неважно, где находится эта точка, все равно частота будет той же самой! Однако на струне есть такие места (где sin (wx/c)=0), которые вообще не перемещаются. Более того, если в любой момент времени t сделать моментальный снимок колеблющейся струны, то на фотографии получится синусоидальная волна, но величина ее амплитуды будет зависеть от времени t. Из выражения (49.3) можно видеть, что длина одного цикла сину­соидальной волны равна длине какой-либо из волн;

l=2pc/w. (49.4)

Неподвижные точки удовлетворяют условию sin(wx/c)=0, которое означает, что wx/c=0, p, 2p, ..., np, ... . Эти точки на­зываются узлами. Каждая точка между двумя соседними узлами движется синусоидально вверх и вниз, но способ ее движения остается фиксированным в пространстве. Это основная харак­теристика того, что называется собственным колебанием, гармоникой или модой. Если движение обладает тем свой­ством, что каждая точка предмета движется строго синусои­дально и все точки движутся с одинаковой частотой (хотя одни, может быть, больше, а другие меньше), то мы имеем дело с собственным колебанием.

§ 2. Волны в ограниченном пространстве и собственные частоты

Перейдем к обсуждению следующей интересной задачи. Что произойдет, если струну закрепить с двух концов, скажем в точках x=0 и x=L? Давайте начнем с идеи отражения волны, с некоего горба, движущегося в одном направлении. С тече­нием времени этот горб подойдет к одному концу струны и в конце концов превратится в небольшой всплеск, поскольку здесь он складывается с перевернутым ответным горбом, идущим с другой стороны. Наконец первый горб совсем исчезнет, а в обратном направлении побежит другой, «ответный» горб, и весь процесс повторится уже на другом конце. Как видите, задача решается совсем просто, впрочем здесь возникает интересный вопрос: можно ли в этом случае получить синусоидальную вол­ну (только что описанное решение