8a. Квантовая механика I | страница 39
Например, один из способов рассмотрения протона и нейтрона — это представлять их как одну и ту же частицу в любом из двух состояний. Мы говорим, что нуклон (протон или нейтрон) есть система с двумя состояниями, в данном случае состояниями по отношению к электрическому заряду. Если рассматривать нуклон таким образом, то состояние |1>может представлять протон, а |2> — нейтрон. Говорят, что у нуклона есть два состояния «изотопспина».
Поскольку мы будем применять матрицы сигма в качестве «арифметики» квантовой механики систем с двумя состояниями, то наскоро познакомимся с соглашениями матричной алгебры. Под «суммой» двух или большего числа матриц подразумевается как раз то, что имелось в виду в уравнении (9.4).
Вообще если мы «складываем» две матрицы А и В, то «сумма» С означает, что каждый ее элемент C>ijдается формулой
C>ij=A>ij+B>ij.
Каждый элемент С есть сумма элементов А и В, стоящих на тех же самых местах.
В гл. 3, § 6, мы уже сталкивались с представлением о матричном «произведении». Та же идея полезна и при обращении с матрицами сигма. В общем случае «произведение» двух матриц A и В (в этом именно порядке) определяется как матрица С с элементами
Это — сумма произведений элементов, взятых попарно из i-й строчки А и k-ro столбца В. Если матрицы расписаны в виде таблиц, как на фиг. 9.1, то можно указать удобную «систему» получения элементов матрицы-произведения.
Фиг. 9.1. Перемножение двух матриц.
Скажем, вы вычисляете С>2>3. Вы двигаете левым указательным пальцем по второй строчке А, а правым — вниз по третьему столбцу В, перемножаете каждую пару чисел и складываете пары по мере движения. Мы попытались изобразить это на рисунке.
Для матриц 2X2 это выглядит особенно просто. Например, если s>хумножается на s>x, то выходит
т. е. просто единичная матрица. Или, для примера, подсчитаем еще
Взглянув на табл. 9.1, вы видите, что это просто матрица s>x, умноженная на i. (Вспомните, что умножение матрицы на число означает умножение каждого элемента матрицы на число.) Попарные произведения сигм очень важны и выглядят они довольно забавно, так что мы их выписали в табл. 9.2. Вы сами можете подсчитать их, как мы сделали это с s>2>хи s>хs>y.
С матрицами о связан еще один очень интересный и важный момент. Можно, если угодно, представить себе, что три матрицы s>х., s>yи s>z подобны трем компонентам вектора; его иногда именуют «вектором сигма» и обозначают а. Это на самом деле «матричный вектор», или «векторная матрица». Это три разные матрицы, связанные каждая со своей осью