8a. Квантовая механика I | страница 29



того, что все переплетение переключится с одного расположения на другое, есть какой-то шанс, что электроны смогут сменить фигуру в танце.

Как мы видели, эта вероятность переброса приводит к сме­шанному состоянию, энергия которого ниже, чем получилось бы, если бы мы рассчитали каждую из схем, представленных на фиг. 8.8, по отдельности. Вместо этого существуют два стацио­нарных состояния: одно с энергией выше, другое — ниже ожидаемого значения. Значит, в действительности истинное нормальное состояние бензола (с наинизшей энергией) не есть какая-либо из возможностей, представленных на фиг. 8.8, а обладает амплитудой 1/Ц2 пребывания в каждом из нарисованных состояний. Это единственное состояние, которое и стоит принимать в расчет в химии бензола при нормальных темпера­турах. Кстати, существует и верхнее состояние; мы вправе так говорить, потому что бензол обладает сильным поглощением света в ультрафиолетовой области с частотой w= >I -E>II)/h. Вспомните, что в аммиаке, где прыгающим вверх и вниз объек­том являлась тройка протонов, расстояние между энергиями приходилось на микроволновую область. В бензоле таким объектом являются электроны, и, поскольку они намного легче, им и перескакивать туда-сюда тоже намного легче, отчего и коэффициент А становится куда больше. В итоге разница энер­гий намного больше — около 1,5 эв, а это энергия ультрафиоле­тового фотона.

Что же происходит, когда мы присоединяем бром? Тогда опять возникают две возможности с двумя разными электрон­ными конфигурациями, показанные на фиг. 8.7. Отличие их в том, что те два базисных состояния, из которых мы исходим, обладают теперь слегка различными энергиями. В стационарное состояние с наинизшей энергией по-прежнему войдет линейная комбинация двух состояний, но с неравными амплитудами. Для состояния |1> амплитуда может стать равной, скажем, Ц>2/>3, для состояния |2> она будет Ц>1/>3 чтобы знать коэффи­циенты точно, нужна добавочная информация, но, во всяком случае, если уж энергии H>11 и H>22 не равны друг другу, то и амплитуды С>1и С>2не могут быть равны между собой. Это, есте­ственно, означает, что одна из двух изображенных на рисунке возможностей более вероятна, чем другая, но все же электроны достаточно подвижны, чтобы и та, и другая обладали какой-то конечной амплитудой. У другого стационарного состояния

амплитуды другие (скажем, Ц>1/>3 и — Ц>2/>3), но оно лежит при более высокой энергии. Есть только одно наинизшее состояние, а не два, как можно было бы подумать, пользуясь наивной тео­рией закрепленных химических связей.