Этюды о свете | страница 14
Память цинка, например, с учетом его красной границы фотоэффекта имеет величину 1,2·10>−14 секунды. При частоте света больше 4,5·10>14 герц цинк получает плотную «очередь» субквантов, сравнимую с ударом частицы вещества. Но при меньшей памяти приемника удара фотона такой же частоты уже не будет. И наоборот: при низкой частоте света, но при увеличенном времени памяти приемного устройства можно получать нужный уровень воздействия — удар, нагрев, трансформацию вида энергии.
В этом — вся соль.
Если поучиться у природы и привлечь теорию, то собранные уловителями лучистой энергии кванты далеких звезд и других излучателей могут стать очень и очень полезными.
Использовать лучистую энергию Космоса в конце XIX века призывал еще первый русский физик-теоретик, профессор Московского университета Николай Умов. А постановка задачи, как известно, — первый шаг к ее решению. Но только недавно немецкие исследователи создали материал, который вместо стекла в окне не только пропускает свет, но и обогревает помещение. Изобретатель компьютерной дискеты Иосиро Накамацу объявил в 2001 году об использовании энергии космических излучений. Главный ученый секретарь Российской академии наук Николай Платэ сообщил в конце того же года в газете «Труд» о создании новых материалов, обладающих памятью и эффективно преобразующих виды энергии.
Недавно в Кремле на заседании Всемирного информационного форума было сказано: «Не нужно больше никакого топлива. Найден новый универсальный источник энергии — свет». «Общая газета» иронизировала в своем сообщении по поводу этого заявления, но уподобилась тем самым герою рассказа А. П. Чехова «Письмо к ученому соседу».
Во-первых, лучистая энергетика уже миллионы лет действует в мире растений и животных, впитывающих живительные лучи Солнца, и не только его.
Во-вторых, существует и успешно развивается гелиоэнергетика — как на земных станциях, так и на космических аппаратах, где она является частью штатной технологии жизнеобеспечения экипажа.
В-третьих, в последние десятилетия объединяются теоретические и технологические разработки в области фотоэлектрического и фототермического преобразования лучистой энергии.
Преобразования лучистой энергии различны. В фотоэнергетике растений — это поглощение и консервация энергии фотонов не только в хлоропластах, как это представлялось в рамках классической теории фотосинтеза, но и в биомембранах. В гелиоэнергетике — высокотемпературный нагрев рабочей среды или получение электроэнергии на глубоких внутриатомных и межатомных уровнях полупроводниковых элементов.