Энергия будущего | страница 93



Теперь о лазере. Его энергия в одном канале не может по разным причинам превышать 0,05-0,1 ватт-часа. В то же время энергия импульса должна быть не меньше 30 ватт-часов. Чтобы получить эту энергию, используют несколько лазеров, луч каждого из них расщепляют на несколько самостоятельных, усиливают до предельной величины и направляют на шарик-мишень.

Такая система позволяет существенно уменьшить разновременность попадания на его поверхность световых импульсов. Ведь эта разница должна быть намного меньше длительности самого импульса.

Понятно, что разновременность прихода световых вспышек может возникать не только из-за того, что первоначальные импульсы нескольких лазеров возбуждаются в разное время, но и просто из-за разной длины оптических путей всех лучей. При общей их длине в несколько десятков метров разница не должна превышать долей миллиметра.

Несмотря на большую сложность создания мощных лазерных систем, уже сейчас действуют установки с энергией импульса, равной 3–5 ватт-часам. Это система «Дельфин» в СССР и «Шива» в США.

Вернемся в нашем повествовании на шаг назад. Мы еще почти ничего не говорили о том, как выглядит самое термоядерное топливо: шарик-мишень. Если бы удалось осуществить режим сверхсжатия вещества согласно предложению американских физиков, то для шарика годилась бы однородная смесь дейтерия и трития.

Но предложенный режим требует очень резкого изменения во времени мощности лазерного импульса, Примерно за 10>-8 секунды она должна возрасти в миллион раз. При этом половина всей энергии импульса должна выделиться всего за 10>-11 секунды. Задача эта чрезвычайно трудная.

Так как же работает лазерный реактор?

Проследим за протекающими в нем потоками энергии. Для этого введем в лазерную систему 1 киловаттчас электроэнергии, девять десятых которой потеряется при накачке лазера и в процессе его вспышки. В импульсе полетит сгусток энергии всего в 0,1 киловатт-часа. На этом потери не кончаются. Около 90 процентов от 0,1 киловатт-часа рассеется на шарике-мишени и потеряется по пути к нему. Значит, на разогрев и сжатие шарика пойдет только 0,01 киловатт-часа.

Но дальше нас ожидает награда за ранее понесенные потери. За счет термоядерного синтеза выделятся 10 киловатт-часов. Преобразуя эту тепловую энергию в электрическую, мы получим 4 киловатт-часа. Отдав из них 1 киловатт-час на новую вспышку лазера, мы получим 3 киловатт-часа полезной электроэнергии.

Если ежесекундно проводить около ста таких вспышек, то мы получим термоядерную электростанцию с лазерным реактором мощностью в миллион киловатт!