Энергия будущего | страница 89
Приближенно его можно осуществить, если, меняя во времени мощность лазерного луча, произвести вначале обжатие шарика медленное, чтобы скорость сжатия на начальном этапе была меньше скорости звука в шарике и в нем не создавались бы ударные волны. Отсюда «безударное» сжатие, то есть отсутствие ударных волн, которые в противном случае, уходя вперед от фронта сжатия, разогревали бы шарик. Так как они не возникают почти до конца сжатия, то шарик не разогревается, поскольку в него не вносится тепло (адиабатическое сжатие). Затем на последнем этапе можно сильно увеличить мощность луча и разогреть шарик. При таком сжатии плотность в нем ядер возрастет в несколько тысяч раз и сможет достичь 1000–2000 граммов на кубический сантиметр.
Такая плотность в шарике из дейтериево-тритиевой смеси существенно меняет характер протекания термоядерной реакции. Поскольку количество ядер в единице объема возрастет, они начнут сталкиваться, как говорится, на каждом шагу. При увеличении плотности вещества в десять тысяч раз, в сто миллионов раз возрастет скорость термоядерной реакции, которая зависит от квадрата плотности вещества. А это означает, что за то время, пока шарик удерживается инерциальными силами, успевает сгореть большое количество термоядерного топлива даже при меньшей температуре разогрева. Выделившаяся при этом энергия во много раз превысит энергию лазерного луча, затраченную на разогрев и сжатие шарика.
Так, используя очень небольшую часть энергии лазера на уплотнение шарика, можно создать гораздо лучшие условия для осуществления термоядерной реакции, то есть значительно снизить требования к величине энергии, которую должен дать лазер для возбуждения термоядерной реакции.
Вспомните, если ранее в случае чисто теплового нагрева (без сверхсжатия) энергия, передаваемая лазером в импульсе, должна была находиться в интервале 30-300 киловатт-часов, то, воспользовавшись сверхсжатием, можно уменьшить ее в тысячу раз.
Задача существенно упростилась. Передача в концентрированном виде такой энергии с помощью системы лазерных устройств — это уже технически разрешимая проблема.
Есть термоядерные нейтроны!
В начале 60-х годов после создания лазеров и проведения первых теоретических исследований по их применению для термоядерного синтеза была начата подготовка к проведению экспериментов.
Многие формулы, схемы, чертежи требовали проверки на реальных физических моделях. Однако целесообразность развертывания работ по термоядерному синтезу, даже экспериментальных, вызывала сомнения и различное отношение. Скажем, специалисты Ливерморской лаборатории (США) считали, что полученные теоретические результаты по сжатию мишеней обнадеживающи, работы по ним следует продолжать Ученые же Лос-Аламосской лаборатории (США) утверждали, что лазерная техника не соответствует еще уровню, при котором было бы целесообразно положение работ и постановка экспериментов по лазерному термоядерному синтезу.