Энергия будущего | страница 72
Это уже значительный шаг вперед навстречу позиции советских специалистов, считавших необходимым временем удвоения 5–6 лет.
Конечно, на пути создания таких реакторов-размножителей придется пройти несколько этапов. Реактор БН-350, с которого был начат рассказ, только первый этап. Время удвоения в нем, если был бы загружен плутоний, составило бы 15–20 лет. Но уже следующий реактор этого типа БН-600 имеет меньшее время удвоения — 12 лет, а у проектируемого еще большего реактора БН-1600 эта величина будет равна 8–9 годам.
И у нас и за рубежом разработаны проекты реакторов-размножителей с еще большей интенсификацией процесса воспроизводства горючего. Это реакторы-размножители на быстрых нейтронах с гелиевым охлаждением. Своим преимуществом они обязаны гелию.
В отличие от натрия гелий практически не поглощает нейтроны. А ведь в реакторе-размножителе каждый нейтрон на счету. Отвоеванный у вредных поглотителей, он в конце концов поглощается в делящихся ядрах с выделением энергии или, попав в ядро урана-238, производит ядро нового горючего плутония.
Реактор с гелиевым теплоносителем обеспечивает лучшее расширенное воспроизводство еще и потому, что в объеме активной зоны такого реактора меньше атомов теплоносителя, замедляющих нейтроны. А это очень важно. Ведь реакторы-размножители потому и обеспечивают хорошее расширенное воспроизводство ядерного горючего, что работают они на быстрых нейтронах. Значит, чем меньше в активной зоне ядер теплоносителя, рассеивающих и замедляющих нейтроны, тем более быстрыми будут нейтроны, тем больше будет получаться в реакторе дополнительного ядерного горючего — плутония. С помощью таких реакторов специалисты надеются довести время удвоения загрузки до 5–6 лет.
Создание эффективных реакторов-размножителей на быстрых нейтронах обеспечивает для атомной энергетики практически безграничные ресурсы ядерного топлива. Это происходит по двум причинам.
Во-первых, гораздо эффективнее (в 20–30 раз) начинает использоваться ядерное горючее в самом реакторе.
Во-вторых, и это особенно важно, в ядерный топливный цикл могут быть эффективно и экономично вовлечены громадные запасы урана, растворенного в морской воде. Эти запасы почти в миллион раз превышают залежи достаточно дешевого урана на суше, в рудных месторождениях.
Почему же уран, растворенный в морской воде, нельзя использовать в уже существующих реакторах на тепловых нейтронах? Дело в том, что при известных сейчас методах извлечения урана из морской воды, он стоит в несколько раз дороже урана, добываемого на суше из рудных месторождений. Тепловые реакторы не могут позволить себе использовать такой дорогой уран — они будут тогда неэкономичны.