Энергия будущего | страница 48
Как очевидно, задача большой части энергетических установок — это получение электричества: наиболее удобной и гибкой формы энергии. Проследим цепочку получения электрической энергии на тепловых станциях.
В топках паровых котлов электростанций сгорают уголь, нефть или газ. Тепло, выделяемое при горении, передается другому веществу, например воде. Вода разогревается и превращается в пар. Пар, выходя из котла, направляется в турбину. В ней энергия пара преобразуется в механическую энергию вращения турбины. И наконец, последняя ступень — турбина вращает генератор, вырабатывающий электрический ток.
Таков долгий, но пока почти единственно возможный путь масштабного получения электрической энергии из топлива. Теперь на смену химическому топливу приходит энергия ядра. В самом факте освобождения внутриядерной энергии заложены совершенно новые большие потенциальные возможности. Во-первых, выделяющуюся энергию можно сконцентрировать в очень небольшом объеме. Другими словами, может быть достигнута громадная плотность энерговыделения. Во-вторых, для осуществления процесса выделения ядерной энергии не нужно непрерывно вводить в установку какие-то иные, кроме топлива, вещества, без которых энерговыделение невозможно (имеется в виду кислород в топке обычных котлов). Кроме того, и само топливо вводится крайне редко. В-третьих, почти отпадает необходимость в обязательном удалении новых продуктов, возникающих в процессе энерговыделения: золы, шлаков, газов — непременных спутников процесса горения угля, сланцев, торфа, нефти. В-четвертых, количество ядерного горючего, нужного для работы реактора, в миллионы раз меньше количества химического топлива, обеспечивающего такую же выработку энергии. И наконец, в-пятых, в отличие от химических реакций (если не говорить о взрывных процессах) при выделении внутриядерной энергии могут быть получены любые необходимые температуры источника тепла.
Да, возможности громадные! Но пока… задачу получения электроэнергии приходится сводить к предыдущей, то есть превращать энергию атома в энергию пара и направлять его в турбину. Почему пока?
В кабинетах физиков-теоретиков, в конструкторских бюро, на экспериментальных установках и реакторах — везде ведутся поиски и разрабатываются новые, более совершенные пути использования энергии атома. Здесь и прямые газотурбинные циклы, и магнитогидродинамические установки, и прямое преобразование тепла в электроэнергию. Трудно сказать, когда все эти новые методы войдут в жизнь. Поэтому посмотрим, как же решается эта задача сейчас.