Энергия будущего | страница 12



Вращаясь вокруг ядра, они как бы образуют так называемую электронную оболочку атома. Взаимодействие именно электронных оболочек определяет характер химических реакций и выделение энергии при этих реакциях.

Приведенное здесь описание атомов весьма и весьма упрощенное. В действительности он устроен гораздо сложнее, и очень многое в его устройстве до сих пор еще неизвестно. Однако и такая упрощенная модель довольно хорошо описывает результаты большого количества опытов, которые проводили физики, исследуя атом.

Позже нам понадобятся сведения еще о некоторых деталях атома, сейчас же дополним нарисованную модель следующим. В ядро атома входят два типа элементарных частиц: протоны и нейтроны. Последние не имеют никакого электрического заряда (отсюда и их название neutrum — ни то, ни другое латинское). Протоны же несут положительные электрические заряды, причем по величине они в точности равны заряду электрона.

Стоит сказать, сколько нейтронов, протонов и электронов содержит в себе каждый атом химических элементов.

Например, в ядре атома водорода — самого легкого элемента — содержится только один протон, вокруг которого вращается один электрон.

У углерода шесть нейтронов, шесть протонов и шесть электронов.

В атоме урана уже 143 нейтрона, 92 протона и 92 электрона.

Нельзя не обратить внимания на то, что у названных элементов число протонов равно числу электронов.

Таблица же Менделеева показывает, что это закономерно и для всех элементов. Но раз число протонов равно числу электронов, то, следовательно, положительный заряд ядра атома всегда равен отрицательному заряду всех электронов, а атом в целом, или «снаружи», электрически нейтрален.

И наконец, последний шаг путешествия в глубь атома: сколько же весят атом, протон, нейтрон? Массы этих частиц настолько малы, что для них придумана новая единица измерения, названная атомной единицей массы (а.е.м.). Одна такая единица массы равна 1,66∙10>-24 грамма. Примерно столько весят и нейтрон и протон.

Вот и кончилось наше путешествие в глубь атома.

Но как все-таки извлечь из него энергию большую, чем та, которую он отдает при химических реакциях? Может быть, можно использовать метод, схожий с реакцией горения, но уже на уровне элементарных частиц, из которых состоит атом, то есть на уровне протонов и нейтронов?

При реакции горения выделение энергии происходит при соединении одних веществ и образовании других, новых. Посмотрим, что можно получить, если так же попытаться составить атом из отдельных элементарных частиц. Начнем с углерода. Какая должна быть масса у его атома, если составить его из элементарных частиц?