Необычные изобретения. От Вселенной до атома | страница 70



В этой главе будет рассказано о некоторых изобретениях наномира и о том, что очень многие из них можно использовать для создания принципиально новой техники. Материал предыдущих глав я обычно излагаю студентам на первых занятиях, чтобы ввести их в область изобретательства и не отпугнуть от этих работ кажущейся их сложностью. Здесь же рассматривается материал по патентованию изобретений более высокого уровня, но также на интересных и необычных примерах. Подобным материалом обычно заканчиваются занятия по обучению изобретательству и патентованию.

С конца ХХ века многие традиционные направления науки стали относить к нанотехнологиям. Как только размер какого-то элемента, относящегося к традиционному процессу, стал меньше 100 нм, сразу такой процесс начали называть нанотехнологическим. Это можно отнести и к диспергированию материалов, и к микроэлектронике, и к химии, и ко многим другим направлениям. Можно ли все это называть нанотехнологиями – ученые спорят до сих пор.

Существует даже известное высказывание: «Наконец-то для химии придумали красивое название».

Но по поводу наномашин, полностью созданных человеком или в соавторстве с природой, споров никогда не было. Разработка, изготовление и последующее использование наномашин – это область реальной нанотехнологии. В начале 1980-х годов американский ученый Эрик Дрекслер опубликовал книгу «Машины создания: грядущая эра нанотехнологии». Первая публикация датируется 1981 годом. От этой публикации можно отсчитывать начало эпохи наномашин. Он ввел понятие ассемблер – устройство, способное к самовоспроизводству и предназначенное для конструирования наномашин из отдельных атомов и молекул.

Вначале остановимся на изобретениях, созданных природой, использование которых в наномашинах пока еще не перешло в практическую плоскость.

Известен так называемый ферментный мотор [2]. В нем по фибрилле 1 (рис. 11.1) длиной до 8 мкм, например молекуле белка тубулина, может перемещаться фермент 2, используя активные окончания (группы) 3, расположенные на белковых удлинениях 4. Причем эти движения похожи на шаги человека. Уже предпринимались попытки визуализации этих шагов с помощью сверхвысокоскоростного сканирования зондовым микроскопом. Скорость такого перемещения может достигать 100 мкм/сек. При этом энергия для перемещения может создаваться колебаниями различной природы, например инициируемыми гидролизом аденазинтрифосфорной кислоты (АТФ). А направление перемещения может определяться градиентами температуры, электрохимического потенциала, концентрации частиц, например броуновских, и т. д. По белкам актин и миозин, достигающим несколько микрон в длину, подобным образом внутрь клеток могут двигаться, например, хромосомы.