Логика для всех. От пиратов до мудрецов | страница 24




Рис. 7


Про мальчика, не удержавшего меч, рыцарь НИЧЕГО НЕ ОБЕЩАЛ. Другими словами, если А ложно (то есть мальчик не удержал меч), то высказывание А ⇒ Б истинно независимо от истинности Б (то есть от катания на лошадке).

Задача 5.1. Перед перекрестком папа остановил машину. «У нас мотор сломался!» – испуганно закричал Ваня. «С чего ты взял?» – удивился папа. «Но ты же сам говорил, что если мотор сломался, то машина не едет», – объяснил Ваня. Правильно ли он рассуждал?

Решение. Папа ничего не говорил о поведении машины с исправным мотором. Она может как ехать, так и стоять (например, на красный свет или просто в гараже). В обоих случаях:

• мотор исправен и машина едет;

• мотор исправен, машина не едет

утверждение «если мотор сломался, то машина не едет» является истинным.

Ванина ошибка в том, что он поменял местами причину и следствие. При этом вместо верного утверждения «Если мотор сломался, то машина не едет» получилось неверное «Если машина не едет, то мотор сломался».

Высказывания «А ⇒ Б» и «Б ⇒ А» означают не одно и то же (см. рис. 8). Высказывания, в которых причина и следствие поменялись местами, называются обратными друг другу. Высказывание, обратное к истинному, может оказаться как истинным, так и ложным.


Рис. 8


Задача 5.2. Постройте высказывание, обратное данному. Истинно ли данное высказывание? А обратное ему?

1) Если последняя цифра натурального числа – 0, 2, 4, 6 или 8, то оно четное.

2) Если натуральное число делится на 6, то оно четное.

3) Если натуральное число делится на 3, то оно делится и на 5.

Ответ. 1) Обратное утверждение: если натуральное число четное, то его последняя цифра – 0, 2, 4, 6 или 8. Оба высказывания истинны.

2) Данное высказывание истинно. Обратное – если натуральное число четное, то оно делится без остатка на 6 – ложно.

3) Ложно и данное высказывание, и обратное ему: если число делится на 3, то оно делится и на 5.

Задача 5.3. «Вырежем» из составного высказывания задачи 5.2 (п. 2) простые высказывания. А: «Число делится на 6», Б: «Число четное». Как мы убедились, для них высказывание «А ⇒ Б» истинно, а обратное ему высказывание «Б ⇒ А» – ложно. Приведите другие примеры высказываний А и Б с тем же свойством.

Обсуждение. Таких пар высказываний сколько угодно. Их можно условно разделить на два типа. Во-первых, высказывания А и Б могут быть связаны между собой по смыслу так, что из А действительно принято делать вывод Б (но не наоборот). Например: