Логика для всех. От пиратов до мудрецов | страница 10



2) Сформулируйте отрицание правильно.

Решение. 1) По закону исключенного третьего верно ровно одно из двух: либо утверждение, либо его отрицание. Найдя двух малышек, одна из которых поет хорошо, а вторая плохо, мы убедимся, что неверно ни само утверждение, ни его «отрицание», придуманное Незнайкой.

2) «Существует хотя бы одна малышка, которая поет плохо». Или «Некоторые малышки поют плохо».

Задача 2.8. Постройте отрицания к каждому утверждению, не используя частицу «не». Где сможете, укажите, что верно: утверждение или его отрицание. Где сможете, обоснуйте свое мнение примером или контрпримером.

1) На Земле существует хотя бы одна гора выше 10000 м над уровнем моря.

2) Существует хотя бы один вулкан с высотой более 10000 м относительно своего основания.

3) Любой жук помещается в спичечном коробке.

4) Некоторые горные реки быстрые.

5) Бутерброд всегда падает маслом вниз.

Ответ. 1) Верно отрицание: любая гора на Земле не выше 10000 м над уровнем моря. Обосновать утверждение такого типа примером нельзя, знание высоты Эвереста (8848 м) не доказывает, что более высоких гор нет.

2) Верно утверждение. Пример – вулкан Мауна-Кеа на Гавайских островах с высотой 10203 м от основания (и «всего» 4205 м над уровнем моря). Последний раз этот вулкан извергался несколько тысяч лет назад. А самый высокий вулкан Солнечной системы – гора Олимп на Марсе имеет высоту 21,2 км от основания.

3) Верно отрицание: существует хотя бы один жук, не помещающийся в спичечном коробке. Пример – жук-голиаф из подсемейства бронзовки, обитающий в Африке. Длина его тела достигает 11 см.

4) Верно утверждение. Примером служит любая горная река.

5) Не стоит относиться к этой задаче всерьез. Для точного построения отрицания потребуется сначала строго определить, что такое бутерброд. Например, может ли он вообще не содержать масла? Мы предполагаем, что при любом определении верным окажется отрицание, но для приведения примера может потребоваться тренировка.


Задачи для самостоятельного решения

Задача 2.9. Рассмотрим два утверждения:

А: В этой корзине все грибы съедобные.

Б: В этой корзине есть хотя бы один съедобный гриб.

Могут ли быть верными: 1) оба утверждения; 2) ровно одно из них; 3) ни одного?

Задача 2.10. Является ли высказывание «В этой корзине некоторые грибы съедобные» отрицанием высказывания «В этой корзине некоторые грибы ядовитые»?

Задача 2.11. Нарисуйте с помощью кругов Эйлера иллюстрацию к каждому высказыванию. Есть ли среди иллюстраций одинаковые? Одинаков ли смысл соответствующих высказываний?